Intel Launches 8th Gen i3+, i5+, i7+ with Optane Memory Mobile Caching up to 64GB

Subject: Storage | April 3, 2018 - 04:56 AM |
Tagged: Optane Memory, Optane, NVMe, Intel, 8th generation core, 800p, 3D XPoint

Remember *way* back just before CES 2017, when we caught that 'Optane Memory Storage Accelerator' entry on some Lenovo laptop release docs? Well, those obviously never happened, and we figured out why a few months later when we reviewed Intel's Optane Memory products and realized that the first iteration of these products had no apparent hardware power management capabilities, meaning they would draw excessive power while idling in a mobile platform.

180307-190822.jpg

While the Optane Memory launch was a year ago, just last month we tested the 800P - what was meant to be the true usable standalone M.2 packaging for Optane. This part was nearly physically identical to Optane Memory, but with some tweaks to available capacities, and more importantly, support for hardware lower power idle states. While this opened the door for use in laptops, it still did not completely close the loop on an Optane-based caching solution for mobile platforms. That loop gets closed today:

2018-04-03-04-48-43.png

Along with a round of other new 8th generation CPU announcements (covered by Ken here), Intel has also launched a 'Core Plus' series, which are essentially the same 8th gen Core i3 / i5 / i7 parts, but with the addition of Optane Memory caching. These will be a newer, more power efficient version of the Optane Memory caching parts. While these were previously available in 16GB and 32GB capacities, this new round will add a 64GB tier to the mix.

2018-04-03-04-49-07.png

Another update being made to Optane Memory is that instead of caching the OS drive, Optane Memory will be able to cache a secondary data drive. This would be ideal for a system that was already using a fast NVMe SSD or 800P/900P as the OS drive, where the user also wanted to cache a very large secondary data HDD. The Optane Memory caching is currently limited to caching either the OS drive or a secondary drive - no current possibility to split the higher capacity Optane Memory modules across two separate drives (we asked, and will continue to press this suggestion).

Not sure what all of this 'Optane' / '3D XPoint' stuff is all about? Check out my article detailing how it all works here

Mid-octane Optane, Intel's 800P series

Subject: Storage | March 9, 2018 - 05:08 PM |
Tagged: ssd, PCIe 3.0 x2, Optane, NVMe, Intel, Brighton Beach, 800p, 58GB, 3D XPoint, 118GB

The price of the 480GB 900P is somewhat prohibitive but the small size of the 32GB gumstick also causes one pause; hence the 800P family with a 58GB and a 118GB model.  They bear price tags of $130 and $200, as you may remember from Al's review.  The Tech Report also had a chance to test these two Optane sticks out, with some tests not covered in our review, such as their own real world copying benchmark.  If you are looking for a second opinion, drop by and take a look.

drives.jpg

"Intel's duo of Optane SSD 800P drives promises the same blend of impressively-low latency and performance consistency as its larger Optane devices at a price more builders can afford. We ran these drives through our storage-testing gauntlet to see whether they can make a name for themselves as primary storage."

Here are some more Storage reviews from around the web:

Storage

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

Intel has wanted a 3D XPoint to go 'mainstream' for some time now. Their last big mainstream part, the X25-M, launched 10 years ago. It was available in relatively small capacities of 80GB and 160GB, but it brought about incredible performance at a time where most other early SSDs were mediocre at best. The X25-M brought NAND flash memory to the masses, and now 10 years later we have another vehicle which hopes to bring 3D XPoint to the masses - the Intel Optane SSD 800P:

180307-190822.jpg

Originally dubbed 'Brighton Beach', the 800P comes in at capacities smaller than its decade-old counterpart - only 58GB and 118GB. The 'odd' capacities are due to Intel playing it extra safe with additional ECC and some space to hold metadata related to wear leveling. Even though 3D XPoint media has great endurance that runs circles around NAND flash, it can still wear out, and therefore the media must still be managed similarly to NAND. 3D XPoint can be written in place, meaning far less juggling of data while writing, allowing for far greater performance consistency across the board. Consistency and low latency are the strongest traits of Optane, to the point where Intel was bold enough to launch an NVMe part with half of the typical PCIe 3.0 x4 link available in most modern SSDs. For Intel, the 800P is more about being nimble than having straight line speed. Those after higher throughputs will have to opt for the SSD 900P, a device that draws more power and requires a desktop form factor.

Specifications:

  • Capacities: 58GB, 118GB
  • PCIe 3.0 x2, M.2 2280
  • Sequential: Up to 1200/600 MB/s (R/W)
  • Random: 250K+ / 140K+ IOPS (R/W) (QD4)
  • Latency (average sequential): 6.75us / 18us (R/W) (TYP)
  • Power: 3.75W Active, 8mW L1.2 Sleep

Specs are essentially what we would expect from an Optane Memory type device. Capacities of 58GB and 118GB are welcome additions over the prior 16GB and 32GB Optane Memory parts, but the 120GB capacity point is still extremely cramped for those who would typically desire such a high performing / low latency device. We had 120GB SSDs back in 2009, after all, and nowadays we have 20GB Windows installs and 50GB game downloads.

Before moving on, I need to call out Intel on their latency specification here. To put it bluntly, sequential transfer latency is a crap spec. Nobody cares about the latency of a sequential transfer, especially for a product which touts its responsiveness - something based on the *random* access latency, and the 6.75us figure above would translate to 150,000 QD1 IOPS (the 800P is fast, but it's not *that* fast). Most storage devices/media will internally 'read ahead' so that sequential latencies at the interface are as low as possible, increasing sequential throughput. Sequential latency is simply the inverse of throughput, meaning any SSD with a higher sequential throughput than the 800P should beat it on this particular spec. To drive the point home further, consider that a HDD's average sequential latency can beat the random read latency of a top-tier NVMe SSD like the 960 PRO. It's just a bad way to spec a storage device, and it won't do Intel any favors here if competing products start sharing this same method of rating latency in the future.

Packaging:

Our samples came in white/brown box packaging, but I did snag a couple of photos of what should be the retail box this past CES:

180109-160835.jpg

180109-160912.jpg

Read on for our full review of the Intel Optane SSD 800P 58GB and 118GB!

CES 2018: Intel Launches Optane 800P M.2 2280 SSDs, 60/120GB Capacities

Subject: Storage, Shows and Expos | January 9, 2018 - 07:32 PM |
Tagged: XPoint, Optane, Intel, CES 2018, CES, 800p, 60GB, 3D XPoint, 120gb

Intel broke news just now that they will be launching a larger version of their 16/32GB Optane Memory modules. The new 800P looks very much the same as its little brother but is designed to operate as a sole boot SSD. Mobile applications are also possible now as the 800P includes power management features that the Optane Memory modules lacked (as they were not intended for mobile).

DSC02412.jpg

We are under embargo as far as performance goes, but from what we know about how Optane parts scale, it's a safe bet that performance will be very close to what we've seen out of the Optane Memory parts. Warranty will be 5 years with an endurance of ~200GB per day. No word on cost at this time. Overall these though fit nicely between Optane Memory (16/32GB) and the 900P (280/480+GB) capacity points.

The elephant in the room is the capacity. While these can store more than the 16/32GB variants, 60/120GB may not be enough for most users out there. Fortunately, devices like these are great in Zx70 RAID or even VROC configurations!