Author:
Subject: Processors, Mobile
Manufacturer: Intel

Core M 5Y70 Specifications

Back in August of this year, Intel invited me out to Portland, Oregon to talk about the future of processors and process technology. Broadwell is the first microarchitecture to ship on Intel's newest 14nm process technology and the performance and power implications of it are as impressive as they are complex. We finally have the first retail product based on Broadwell-Y in our hands and I am eager to see how this combination of technology is going to be implemented.

If you have not read through my article that dives into the intricacies of the 14nm process and the architectural changes coming with Broadwell, then I would highly recommend that you do so before diving any further into this review. Our Intel Core M Processor: Broadwell Architecture and 14nm Process Reveal story clearly explains the "how" and "why" for many of the decisions that determined the direction the Core M 5Y70 heads in.

As I stated at the time:

"The information provided by Intel about Broadwell-Y today shows me the company is clearly innovating and iterating on its plans set in place years ago with the focus on power efficiency. Broadwell and the 14nm process technology will likely be another substantial leap between Intel and AMD in the x86 tablet space and should make an impact on other tablet markets (like Android) as long as pricing can remain competitive. That 14nm process gives Intel an advantage that no one else in the industry can claim and unless Intel begins fabricating processors for the competition (not completely out of the question), that will remain a house advantage."

With a background on Intel's goals with Broadwell-Y, let's look at the first true implementation.

Continue reading our review of the Intel Core M 5Y70 Broadwell-Y Processor!!

Author:
Manufacturer: Intel

Core M 5Y70 Early Testing

During a press session today with Intel, I was able to get some early performance results on Broadwell-Y in the form of the upcoming Core M 5Y70 processor.

llama1.jpg

Testing was done on a reference design platform code named Llama Mountain and at the heart of the system is the Broadwell-Y designed dual-core CPU, the Core M 5Y70, which is due out later this year. Power consumption of this system is low enough that Intel has built it with a fanless design. As we posted last week, this processor has a base frequency of just 1.10 GHz but it can boost as high as 2.6 GHz for extra performance when it's needed.

Before we dive into the actual result, you should keep in mind a couple of things. First, we didn't have to analyze the systems to check driver revisions, etc., so we are going on Intel's word that these are setup as you would expect to see them in the real world. Next, because of the disjointed nature of test were were able to run, the comparisons in our graphs aren't as great as I would like. Still, the results for the Core M 5Y70 are here should you want to compare them to any other scores you like.

First, let's take a look at old faithful: CineBench 11.5.

cb11.png

UPDATE: A previous version of this graph showed the TDP for the Intel Core M 5Y70 as 15 watts, not the 4.5 watt listed here now. The reasons are complicated. Even though the Intel Ark website lists the TDP of the Core M 5Y70, Intel has publicly stated the processor will make very short "spikes" at 15 watts when in its highest Turbo Boost modes. It comes to a discussion of semantics really. The cooling capability of the tablet is only targeted to 4.5-6.0 watts and those very short 15 watt spikes can be dissipated without the need for extra heatsink surface...because they are so short. SDP anyone? END UPDATE

With a score of 2.77, the Core M 5Y70 processor puts up an impressive fight against CPUs with much higher TDP settings. For example, Intel's own Pentium G3258 gets a score of 2.71 in CB11, and did so with a considerably higher thermal envelope. The Core i3-4330 scores 38% higher than the Core M 5Y70 but it requires a TDP 3.6-times larger to do so. Both of AMD's APUs in the 45 watt envelope fail to keep up with Core M.

Continue reading our preview of Intel Core M 5Y70 Performance!!