Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Since Samsung’s announcement of the 960 Series SSDs, I have been patiently waiting not for the 960 PRO (reviewed a few weeks back), but for the 960 EVO. It is the EVO, in my opinion, that is the big release here. Sure, it doesn’t have the quad Hexadecimal Die Packages, Package-on-Package DRAM and ultimate higher capacity of the PRO, but what it *does* potentially have is class leading performance / price in the M.2 form factor. Just as we all wanted lower cost SSDs in the 2.5” SATA form factor, M.2 is seeing greater adoption across laptops and desktop motherboards, and it’s high time we started seeing M.2 SSDs come down in price.

I know, don’t tell me, the Intel 600p carries a SATA-level cost/GB in an M.2 form factor. Sure that’s great, and while I do recommend that SSD for those on a budget, its caching scheme comes with some particularly nasty inconsistencies in sustained writes that may scare off some power users. Samsung 840/850 EVO SSDs have historically handled the transitions between SLC cache and TLC bulk writes far better than any competing units, and I’ve eagerly anticipated the chance to see how well their implementation carries over to an NVMe SSD. Fortunately for us, that day is today:

161111-133906.jpg

Specifications:

specs.png

An important point to note in the performance specs - the lowest capacity model is the only one to see its performance significantly taper in stated specifications. That is because even with its 48-layer VNAND operating in SLC mode, there are only two packages on all 960 EVOs and the 250GB capacity comes equipped with the fewest dies to spread the work across. Less parallelism leads to lower ultimate performance. Still, it is impressive to see only 250GB of flash reaching near saturation of PCIe 3.0 x4 in reads.

I've appended the 'sustained' (TLC) performance specs at the bottom of the above chart. These 'after TurboWrite' figures are the expected performance after the SLC cache has been depleted. This is nearly impossible in actual usage scenarios, as it is extremely difficult for any typical (or even power user) desktop workloads to write fast and long enough to deplete such a cache, especially considering how much larger these caches are compared to prior models.

Packaging:

161111-134300.jpg

Samsung has carried forward their simple packaging introduced with the 960 PRO. The felt pad on the bottom of the installation guide is both functional and elegant, keeping the 960 Pro safely in place during shipment.

Read on for the full review of the 250GB and 1TB Samsung 960 EVO!

More test results of the new Samsung 960 Pro, if your brain still has the free space to store it

Subject: Storage | October 18, 2016 - 03:30 PM |
Tagged: vnand, ssd, Samsung, NVMe, 960 PRO, 48-layer, 2TB

Al has already exhaustively covered the new Samsung 960 Pro in his latest article, which also happens to be the premiere of PC Perspective's new storage testing suite.  An in depth discussion of the new testing methodology can be found on the third page and you can expect to hear about it on our podcast tomorrow and perhaps in a standalone article in the near future.  Several comments have inquired as to the effect this drive would have on a system used for gaming or multimedia and how it would compare to drives like the Intel 750 and DC P3700 or OZC's RD 400.  The best place to find those comparisons is over at The Tech Report, their RoboBench transfer test features a long list of drives you can look at.  Check it out once you have finished off our article.

naked.jpg

"Samsung's 960 Pro follows up on last year's 950 Pro with denser V-NAND, a brand-new controller, and space-age label technology. We put this drive to the test to see whether its performance is truly out-of-this-world."

Here are some more Storage reviews from around the web:

Storage

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Just under a year ago we published our review of the Samsung 950 PRO, their first foray into NVMe SSD territory. Today we have a 960 PRO, which strives to be more revolutionary than evolutionary. There are some neat new features like 16-die packages and a Package-on-Package controller/DRAM design, all cooled by a copper heat spreading label! This new model promises to achieve some very impressive results, so without further delay, let's get to it!

161018-080624.jpg

Specifications:

specs-1.png

specs-2.png

Specs have not changed since the announcement. Highlights include

  • A new 5-core Polaris controller (with one die solely dedicated to coordinating IO's to/from the host)
  • 4-Landing Design - It's tough fitting four flash packages onto an M.2 2280 SSD, but Samsung has done it, thanks to the below feature.
  • Package-on-Package - The controller and DRAM are stacked within the same package, saving space.
  • Hexadecimal Die Packages - For the 960 Pro to reach 2TB of capacity, 16 48-layer MLC V-NAND packages must be present within each package. That's a lot of dies per package!

Packaging:

161018-080414.jpg

161018-080517.jpg

Nice touch with the felt pad on the bottom of the installation guide. This pad keeps the 960 Pro safely in place during shipment.

Read on for the full review of the 2TB Samsung 960 PRO!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications, and Packaging

Introduction:

Everyone expects SSD makers to keep pushing out higher and higher capacity SSDs, but the thing holding them back is sufficient market demand for that capacity. With that, it appears Samsung has decided it was high time for a 4TB model of their 850 EVO. Today we will be looking at this huge capacity point, and paying close attention to any performance dips that sometimes result in pushing a given SSD controller / architecture to extreme capacities.

DSC01499.jpg

This new 4TB model benefits from the higher density of Samsung’s 48-layer V-NAND. We performed a side-by-side comparison of 32 and 48 layer products back in March, and found the newer flash to reduce Latency Percentile profiles closer to MLC-equipped Pro model than the 32-layer (TLC) EVO:

read-4.png

Latency Percentile showing reduced latency of Samsung’s new 48-layer V-NAND

We’ll be looking into all of this in today’s review, along with trying our hand at some new mixed paced workload testing, so let’s get to it!

Read on for our full review of the Samsung 850 EVO 4TB SATA SSD!

Brace Yourselves, Samsung SM961, PM961, 960 PRO and 960 EVO SSDs Are Coming!

Subject: Storage | June 21, 2016 - 04:02 PM |
Tagged: V-NAND, SM961, Samsung, PM961, 960 PRO, 960 EVO, 48-layer

We've known Samsung was working on OEM-series SSDs using their new 48-layer V-NAND, and it appears they are getting closer to shipping in volume, so here's a peek at what is to come:

s-l1600.jpg

First up are the SM961 and PM961. The SM and PM appear to be converging into OEM equivalents of the Samsung 'PRO' and 'EVO' retail product lines, with MLC flash present in the SM and TLC (possibly with SLC TurboWrite cache) in the PM. The SM961 has already been spotted for pre-order over at Ram City. Note that they currently list the 1TB, 512GB, and 256GB models, but at the time of this writing, all three product titles (incorrectly) state 1TB. That said, pricing appears to be well below the current 950 PRO retail for equivalent capacities.

s-l500.jpg

These new parts certainly have impressive specs on paper, with the SM961 claiming a 25-50% gain over the 950 PRO in nearly all metrics thanks to 48-layer V-NAND and an updated 'Polaris' controller. We've looked at plenty of Samsung OEM units in the past, and sometimes specs differ between OEM and retail parts, but it is starting to make sense for Samsung to simply relabel a given OEM / retail part at this point (minus any vendor-requested firmware detuning, like reduced write speeds in favor of increased battery life, etc).

With that are the other two upcoming parts that do not appear on the above chart. Those will be the 960 PRO and EVO, barring any last second renaming by Samsung. Originally we were expecting Samsung to add a 1TB SKU to their 950 PRO line, but it appears they have changed gears and will now shift their 48-layer parts to the 960 series. The other big bonus here is that we should also be getting an EVO, which would mark Samsung's first retail M.2 PCIe 3.0 x4 part sporting TLC flash. That product should come in a lot closer to 850 EVO pricing, but offer significantly greater performance over the faster interface. While we don't have specs on these upcoming products, the safe bet is that they will come in very close (if not identical) to that of the aforementioned SM961 and PM961.

48-V-NAND.png

Samsung's 48-Layer V-NAND, dissected by TechInsights
(Similar analysis on 32-Layer V-NAND here)

All of these upcoming products are based on Samsung's 48-layer V-NAND. Announced late last year, this flash has measurably reduced latency (thanks to our exclusive Latency Percentile testing) as compared to the older 32-layer parts. Given the performance improvements noted above, it seems that even more can be extracted from this new flash when connected to a sufficiently performant controller. Previous controllers may have been channel bandwidth limited on the newest flash, where Polaris can likely open up the interface to higher speed grades.

We await these upcoming launches with baited breath. It's nice to see these parts inching closer to the saturation point of quad lane PCIe 3.0. Naturally there will be more to follow here, so stay tuned!

Samsung Crams Entire 512GB NVMe SSD Into Single BGA Chip Package

Subject: Storage | May 31, 2016 - 03:38 PM |
Tagged: TurboWrite, Samsung, PM971-NVMe, BGA, 512GB, 48-layer, 32GB, 256Gbit

Have you ever checked out one of those laptops with the soldered-on eMMC SSD, where the manufacturer was basically checking the 'SSD' box for forgetting the 'Performance' box entirely? What if I told you that it was possible to fit an entire PCIe NVMe SSD with performance comparable to a 950 Pro into a package similar to those eMMC parts?

BGA_SSD_Main_2_2.jpg

Source: Samsung
Subject: Storage
Manufacturer: Samsung

Introduction

Since Samsung’s August 2015 announcement of their upcoming 48-layer V-NAND, we’ve seen it trickle into recent products like the SSD T3, where it enabled 2TB of capacity in a very small form factor. What we have not yet seen was that same flash introduced in a more common product that we could directly compare against the old. Today we are going to satisfy our (and your) curiosity by comparing a 1TB 850 EVO V1 (32-layer - V2) to a 1TB 850 EVO V2 (48-layer - V3).

**edit**

While Samsung has produced three versions of their V-NAND (the first was 24-layer V1 and only available in one of an enterprise SSDs), there have only been two versions of the 850 EVO. Despite this, Samsung internally labels this new 850 EVO as a 'V3' product as they go by the flash revision in this particular case.

**end edit**

DSC00214.jpg

Samsung’s plan is to enable higher capacities with this new flash (think 4TB 850 EVO and PRO), they also intend to silently push that same flash down into the smaller capacities of those same lines. Samsung’s VP of Marketing assured me that they would not allow performance to drop due to higher per-die capacity, and we can confirm that in part with their decision to drop the 120GB 850 EVO during the switch to 48-layer in favor of a planar 750 EVO which can keep performance up. Smaller capacity SSDs work better with higher numbers of small capacity dies, and since 48-layer VNAND in TLC form comes in at 32GB per die, that would have meant only four 48-layer dies in a 120GB SSD.

48-V-NAND.png

Samsung's 48-Layer V-NAND, dissected by TechInsights
(Similar analysis on 32-Layer V-NAND here)

Other companies have tried silently switching flash memory types on the same product line in the past, and it usually does not go well. Any drops in performance metrics for a product with the same model and spec sheet is never welcome in tech enthusiast circles, but such issues are rarely discovered since companies will typically only sample their products at their initial launch. On the flip side, Samsung appears extremely confident in their mid-line flash substitution as they have voluntarily offered to sample us a 1TB 48-layer 850 EVO for direct comparison to our older 1TB 32-layer 850 EVO. The older EVO we had here had not yet been through our test suite, so we will be comparing these two variations directly against each other starting from the same fresh out of the box and completely unwritten state. Every test will be run on both SSDs in the same exact sequence, and while we are only performing an abbreviated round of testing for these products, the important point is that I will be pulling out our Latency Percentile test for detailed performance evaluation at a few queue depths. Latency Percentile testing has proven itself far more consistent and less prone to data scatter than any other available benchmark, so we’ll be trusting it to give us the true detailed scoop on any performance differences between these two types of flash.

Read on for our comparison of the new and the old!
(I just referred to a 3D Flash part as 'old'. Time flies.)

Samsung Announces New Branding and Future SSD Capacity Expansion with their New 48-Layer V-NAND

Subject: Storage | September 22, 2015 - 06:10 PM |
Tagged: vnand, V-NAND, Samsumg, 4TB, 48-layer, 2TB, 1TB

During yesterday's SSD Summit, obscured by their 950 PRO launch was new branding for their 32 (and now 48) layer Vertical NAND technology:

V-NAND branding.JPG

This new branding is more in line with what folks were calling their NAND anyway (Samsung was previously using the term '3D VNAND'. Dropping the 3D made sense, as it was implied with the 'V').

Also of interest were some announcements of upcoming higher capacities of their existing models:

capacity-1.JPG

4TB 850 EVO and PRO? Yes please.

capacity-2.JPG

1TB in the 850 EVO M.2 edition, and while there is no slide for this, the 950 PRO is also expected to be updated with a 1TB model within the same time frame as well.

How is all of this expansion possible? The answer is their third generation V-NAND, which is 48 layers and 256 GBit (32 GB) capacity per die. Samsung intends to roll this flash out and update all model lines currently using V-NAND technology. This decision was made by Samsung's Senior VP of Marketing, UnSoo Kim:

DSC06006.jpg

...now before you get out the pitchforks and form up the 'don't change the flash without a new model' lynch mob, I'd like to point out a few things that make this change different than what you might have seen in the past.

  • Samsung is trying to prevent confusion by adding product lines with nearly identical specs.
  • Samsung is being very open about this change (others were secretive / deceptive).
  • Samsung has promised that they will only implement this change in a way that *increases* the performance and *decreases* the power consumption of these products.

I did leave the Q+A with some further questions about this change. The lower capacities of the 850 EVO still see slower write performance when writing straight to TLC flash (SLC cache is full). This is because there are fewer dies available to write the data, and each die can only write so fast in TLC mode. Since the 48-layer V-NAND is to have double the capacity per die, that would mean half the dies per SSD and possibly slower write speeds in the overall product.

I approached UnSoo Kim after the Q+A and asked this specific question, and his answer was both interesting and refreshing. First, he understood my question immediately and assured me that they will not roll out 256Gbit 48-layer V-NAND into their smaller capacity models - in order to prevent any performance reduction over their current 32-layer equipped parts. Second, he told me that they also intend to produce a 128Gbit variant of 48-layer V-NAND at some point in the future, and use *that* part to substitute the 128Gbit 32-layer V-NAND in those smaller capacity models, keeping the die counts (and therefore sequential write speeds) equal. That additional variant of their third generation V-NAND is the only way (in my mind) that they could update their smaller capacity parts without losing performance, and it was great to see that Samsung has thought out the execution of this rollout in such a proper manner.

FMS 2015: Samsung's New 256Gbit VNAND Enables 16TB PM1633a Datacenter SSD

Subject: Storage | August 11, 2015 - 04:59 PM |
Tagged: Samsung, vnand, 48-layer, tlc, 16TB, FMS 2015

I get these emails and comments all the time - "I want a larger capacity SSD". Ok, here ya go:

DSC04114_DxO.jpg

Samsung's earlier 48-layer VNAND announcement was exciting, but we already knew about it going into the keynote. What we did not know was that Samsung was going to blew the doors off of their keynote when they dropped this little gem. It's not just the largest capacity SSD, as this thing is more dense than any HDD's available today as well. That's 16TB of 48-layer TLC VNAND packed into a 2.5" form factor SAS-connected SSD.

...now what do you do once you have such a high density device? Well, you figure out how many you can cram into a 2U chassis of course!

DSC04155_DxO.jpg

Yup, that's 48 of those new SSDs, making for a capacity of 768TB in a 2U chassis. Samsung described this as a "JBOF" (Just a Bunch Of Flash), so processing the 2 million IOPS this array is capable of will have to be left to the connected system.

No word on pricing, but I'd think we are in 'mortgage the house' territory if you want to put this into your home PC.

There is more to follow from Flash Memory Summit, but for now I've got to run to another meeting!

FMS 2015: *UPDATED* Samsung Adds Layers to its 3D VNAND, Doubling Capacity While Reducing Power Consumption

Subject: Storage | August 11, 2015 - 04:39 PM |
Tagged: vnand, tlc, Samsung, FMS 2015, 48-layer, 32GB, 32-layer, 256Gbit

FMS 2015: Samsung Adds Layers to its 3D VNAND, Doubling Capacity While Reducing Power Consumption

Samsung recently added 2TB capacity parts to their 850 EVO SATA SSDs, but today’s announcement may double that. Today at Flash Memory Summit, Samsung has announced a new iteration on their 3D VNAND technology.

Picture5.png

Cross section of Samsung 32-layer VNAND. (TechInsights)

The announcement is a new TLC 3D VNAND (the type present in the 850 EVO Series). The new parts consist of an updated die with the following improvements:

  • 48 layer VNAND - up from 32 layers of the previous generation
  • 256Gbit (32GB) capacity - up from 128Gbit (16GB) capacity of 32-layer VNAND
  • 30% reduction in power consumption over 32-layer VNAND

48_Main.jpg

Samsung’s new 48-layer VNAND.

I suspected Samsung would go this route in order to compete with the recent announcements from Intel/Micron and SanDisk. Larger die capacities may not be the best thing for keeping performance high in smaller capacity SSDs (a higher number of smaller capacity dies helps there), but it is definitely a good capability to have since higher capacity per die translates to more efficient flash die production.

The Samsung keynote is at noon today (Pacific), and I will update this piece with any photos relevant to the announcement after that keynote.

*UPDATE*

I just got out of the Samsung keynote. There were some additional slides with data relevant to this post:

DSC04064_DxO.jpg

This image simply shows the additional vertical stacking, but adds that Samsung has this new flash in production right now.

DSC04062_DxO.jpg

The new higher capacity dies enable 1.4x greater density per wafer (realize that this does not mean more dies per wafer, as the image incorrectly suggests).

DSC04071_DxO.jpg

The power consumption improvements (right) were in the press release, however the speed improvements (left) were not. A 2x improvement in per-die speeds means that Samsung should not see a performance hit if they migrate their existing 128Gbit TLC VNAND SSDs over to these new 256Gbit parts. Speaking of which...

DSC04075_DxO.jpg

Not only is this new VNAND being produced *this month*, Samsung is retrofitting their 850 EVO line with the new parts. Again, we expect no performance delta but will likely retest these new versions just to double check for any outliers.

There was some more great info from the keynote, but that will appear in another post later today.

Samsung’s press blast appears after the break.

Source: Samsung