Computex 2018: Intel Announces 380GB Optane 905P in M.2 22110 Form Factor

Subject: Storage | June 6, 2018 - 03:55 AM |
Tagged: ssd, Optane Memory, Optane, M.2 22110, M.2, Intel, 905P, 3D XPoint

At Computex 2018, Intel announced a new Optane 905P SSD:

905P Rear.PNG

...the Optane 905P 380GB, now in an M.2 form factor!

905P Front.jpg

This looks to be a miniaturization of the 7-channel controller previously only available on the desktop add-in cards (note there are 7 packages). There is a catch though, as fitting 7 packages plus a relatively large controller means this is not M.2 2280, but M.2 22110. The M.2 22110 (110mm long) form factor may limit where you can install this product, as mobile platforms and some desktop motherboards only support up to an M.2 2280 (80mm) length. Power consumption may also be a concern for mobile applications, as this looks to be the full blown 7-channel controller present on the desktop AIC variants of the 905P and 900P.

We have no performance numbers just yet, but based on the above we should see figures in-line with the desktop Optane parts (and higher than the previous 'Optane Memory'/800P M.2 parts, which used a controller with fewer channels). Things may be slightly slower since this part would be limited to a ~7W power envelope - that is the maximum you can get out of an M.2 port without damaging the motherboard or overheating the smaller surface area of an M.2 form factor.

An interesting point to bring up is that while 3D XPoint does not need to be overprovisioned like NAND flash does, there is a need to have some spare area as well as space for the translation layer (used for wear leveling - still a requirement for 3D XPoint as it must be managed to some degree). In the past, we've noted that smaller capacities of a given line will see slightly less of a proportion of available space when comparing the raw media present to the available capacity. Let's see how this (theoretically) works out for the new 905P:

I'm making an educated guess that the new 380GB part contains 4 die stacks within its packages. We've never seen 8 die stacks come out of Intel, and there is little reason to believe any would be used in this product based on the available capacity. Note that higher capacities run at ~17% excess media, but as the capacity reduces, the percentage excess increases. The 280GB 900P increases to 20% by that capacity, but the new 905P M.2 comes in at 18%. Not much of a loss there, meaning the cost/GB *should* come in-line with the pricing of the 480GB 900P, which should put the 905P 380GB right at a $450-$500 price point.

The new 905P M.2 22110 is due out later this year.

Source: Intel

Intel Launches Optane DC Persistent Memory (DIMMs), Talks 20TB QLC SSDs

Subject: Storage | May 30, 2018 - 07:28 PM |
Tagged: ssd, QLC, Optane DC, Optane, Intel, DIMM, 3D XPoint, 20TB

Lots of good stuff coming out of Intel's press event earlier today. First up is Optane, now (finally and officially) in a DIMM form factor!:

Intel-Optane-Persistent-memory-1-.jpg

We have seen and tested Optane in several forms, but all so far have been bottlenecked by the interface and controller architectures. The only real way to fully realize the performance gains of 3D XPoint (how it works here) is to move away from the slower interfaces that are holding it back. A DIMM form factor is just the next logical step here.

filling-the-gaps-between-memory-and-storage-after.png

Intel shows the new 'Optane DC Persistent Memory' as yet another tier up the storage/memory stack. The new parts will be available in 128GB, 256GB, and 512GB capacities. We don't have confirmation on the raw capacity, but based on Intel's typical max stack height of 4 dies per package, 3D XPoint's raw die capacity of 16GB, and a suspected 10 packages per DIMM, that should come to 640GB raw capacity. Combined with a 60 DWPD rating (up from 30DWPD for P4800X), this shows Intel is loosening up their design margins considerably. This makes sense as 3D XPoint was a radically new and unproven media when first launched, and it has now built up a decent track record in the field.

gap-3.png

Bridging The Gap chart - part of a sequence from our first P4800X review.

Recall that even with Intel's Optane DC SSD parts like the P4800X, there remained a ~100x latency gap between the DRAM and the storage. The move to DIMMs should help Intel push closer to the '1000x faster than NAND' claims made way back when 3D XPoint was launched. Even if DIMMs were able to extract all possible physical latency gains from XPoint, there will still be limitations imposed by today's software architectures, which still hold many legacy throwbacks from the times of HDDs. Intel generally tries to help this along by providing various caching solutions that allow Optane to directly augment the OS's memory. These new DIMMs, when coupled with supporting enterprise platforms capable of logically segmenting RAM and NV DIMM slots, should be able to be accessed either directly or as a memory expansion tier.

Circling back to raw performance, we'll have to let software evolve a bit further to see even better gains out of XPoint platforms. That's likely the reason Intel did not discuss any latency figures for the new products today. My guess is that latencies should push down into the 1-3us range, splitting the difference between current generation DRAM (~80-100ns) and PCIe-based Optane parts (~10us). While the DIMM form factor is certainly faster, there is still a management layer at play here, meaning some form of controller or a software layer to handle wear leveling. No raw XPoint sitting on the memory bus just yet.

Also out of the event came talks about QLC NAND flash. Recently announced by Intel / Micron, along with 96-layer 3D NAND development, QLC helps squeeze higher capacities out of given NAND flash dies. Endurance does take a hit, but so long as the higher density media is coupled to appropriate client/enterprise workloads, there should be no issue with premature media wear-out or data retention. Micron has already launched an enterprise QLC part, and while Intel been hush-hush on actual product launches, they did talk about both client and enterprise QLC parts (with the latter pushing into 20TB in a 2.5" form factor).

Press blast for Optane DC Persistent Memory appears after the break (a nicer layout is available by clicking the source link).

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

Over the past couple of days, we saw some rumors and e-tailer appearances of the Intel SSD 905P. Essentially an incremental upgrade to the 900P, with a few notable differences. Specs see a slight bump across the board, as do capacities, but the most striking difference is Intel’s apparent choice to move forward with the blue-LED enabled design seen in a press deck slide that began circulating last year:

intel-optane-ssd-900p.jpg

That upper right design seemed pretty cool at the time, and I never thought we would see it materialize, but less than 24 hours ago this arrived at the office:

180502-163726.jpg

Note: The color is user adjustable - we just don't have the software for it yet.

*edit* colors are configurable via command line, using the most recent SSD toolbox app. The possible colors are limited (literally red/green/blue/off - that's it), but I've confirmed that the setting does persist after reboot / power cycling / changing systems. This is a welcome change over other RGB-enabled components that require software to always be installed to control (or even turn off) lighting. Here's a look at the other two colors:

180502-163529.jpg

180502-163629.jpg

*end edit*

Well now that it’s here, let’s see what it can do!

Read on for our full review of the Intel SSD 905P 960GB!

Intel Launches 8th Gen i3+, i5+, i7+ with Optane Memory Mobile Caching up to 64GB

Subject: Storage | April 3, 2018 - 04:56 AM |
Tagged: Optane Memory, Optane, NVMe, Intel, 8th generation core, 800p, 3D XPoint

Remember *way* back just before CES 2017, when we caught that 'Optane Memory Storage Accelerator' entry on some Lenovo laptop release docs? Well, those obviously never happened, and we figured out why a few months later when we reviewed Intel's Optane Memory products and realized that the first iteration of these products had no apparent hardware power management capabilities, meaning they would draw excessive power while idling in a mobile platform.

180307-190822.jpg

While the Optane Memory launch was a year ago, just last month we tested the 800P - what was meant to be the true usable standalone M.2 packaging for Optane. This part was nearly physically identical to Optane Memory, but with some tweaks to available capacities, and more importantly, support for hardware lower power idle states. While this opened the door for use in laptops, it still did not completely close the loop on an Optane-based caching solution for mobile platforms. That loop gets closed today:

2018-04-03-04-48-43.png

Along with a round of other new 8th generation CPU announcements (covered by Ken here), Intel has also launched a 'Core Plus' series, which are essentially the same 8th gen Core i3 / i5 / i7 parts, but with the addition of Optane Memory caching. These will be a newer, more power efficient version of the Optane Memory caching parts. While these were previously available in 16GB and 32GB capacities, this new round will add a 64GB tier to the mix.

2018-04-03-04-49-07.png

Another update being made to Optane Memory is that instead of caching the OS drive, Optane Memory will be able to cache a secondary data drive. This would be ideal for a system that was already using a fast NVMe SSD or 800P/900P as the OS drive, where the user also wanted to cache a very large secondary data HDD. The Optane Memory caching is currently limited to caching either the OS drive or a secondary drive - no current possibility to split the higher capacity Optane Memory modules across two separate drives (we asked, and will continue to press this suggestion).

Not sure what all of this 'Optane' / '3D XPoint' stuff is all about? Check out my article detailing how it all works here

Mid-octane Optane, Intel's 800P series

Subject: Storage | March 9, 2018 - 05:08 PM |
Tagged: ssd, PCIe 3.0 x2, Optane, NVMe, Intel, Brighton Beach, 800p, 58GB, 3D XPoint, 118GB

The price of the 480GB 900P is somewhat prohibitive but the small size of the 32GB gumstick also causes one pause; hence the 800P family with a 58GB and a 118GB model.  They bear price tags of $130 and $200, as you may remember from Al's review.  The Tech Report also had a chance to test these two Optane sticks out, with some tests not covered in our review, such as their own real world copying benchmark.  If you are looking for a second opinion, drop by and take a look.

drives.jpg

"Intel's duo of Optane SSD 800P drives promises the same blend of impressively-low latency and performance consistency as its larger Optane devices at a price more builders can afford. We ran these drives through our storage-testing gauntlet to see whether they can make a name for themselves as primary storage."

Here are some more Storage reviews from around the web:

Storage

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

Intel has wanted a 3D XPoint to go 'mainstream' for some time now. Their last big mainstream part, the X25-M, launched 10 years ago. It was available in relatively small capacities of 80GB and 160GB, but it brought about incredible performance at a time where most other early SSDs were mediocre at best. The X25-M brought NAND flash memory to the masses, and now 10 years later we have another vehicle which hopes to bring 3D XPoint to the masses - the Intel Optane SSD 800P:

180307-190822.jpg

Originally dubbed 'Brighton Beach', the 800P comes in at capacities smaller than its decade-old counterpart - only 58GB and 118GB. The 'odd' capacities are due to Intel playing it extra safe with additional ECC and some space to hold metadata related to wear leveling. Even though 3D XPoint media has great endurance that runs circles around NAND flash, it can still wear out, and therefore the media must still be managed similarly to NAND. 3D XPoint can be written in place, meaning far less juggling of data while writing, allowing for far greater performance consistency across the board. Consistency and low latency are the strongest traits of Optane, to the point where Intel was bold enough to launch an NVMe part with half of the typical PCIe 3.0 x4 link available in most modern SSDs. For Intel, the 800P is more about being nimble than having straight line speed. Those after higher throughputs will have to opt for the SSD 900P, a device that draws more power and requires a desktop form factor.

Specifications:

  • Capacities: 58GB, 118GB
  • PCIe 3.0 x2, M.2 2280
  • Sequential: Up to 1200/600 MB/s (R/W)
  • Random: 250K+ / 140K+ IOPS (R/W) (QD4)
  • Latency (average sequential): 6.75us / 18us (R/W) (TYP)
  • Power: 3.75W Active, 8mW L1.2 Sleep

Specs are essentially what we would expect from an Optane Memory type device. Capacities of 58GB and 118GB are welcome additions over the prior 16GB and 32GB Optane Memory parts, but the 120GB capacity point is still extremely cramped for those who would typically desire such a high performing / low latency device. We had 120GB SSDs back in 2009, after all, and nowadays we have 20GB Windows installs and 50GB game downloads.

Before moving on, I need to call out Intel on their latency specification here. To put it bluntly, sequential transfer latency is a crap spec. Nobody cares about the latency of a sequential transfer, especially for a product which touts its responsiveness - something based on the *random* access latency, and the 6.75us figure above would translate to 150,000 QD1 IOPS (the 800P is fast, but it's not *that* fast). Most storage devices/media will internally 'read ahead' so that sequential latencies at the interface are as low as possible, increasing sequential throughput. Sequential latency is simply the inverse of throughput, meaning any SSD with a higher sequential throughput than the 800P should beat it on this particular spec. To drive the point home further, consider that a HDD's average sequential latency can beat the random read latency of a top-tier NVMe SSD like the 960 PRO. It's just a bad way to spec a storage device, and it won't do Intel any favors here if competing products start sharing this same method of rating latency in the future.

Packaging:

Our samples came in white/brown box packaging, but I did snag a couple of photos of what should be the retail box this past CES:

180109-160835.jpg

180109-160912.jpg

Read on for our full review of the Intel Optane SSD 800P 58GB and 118GB!

CES 2018: Intel Launches Optane 800P M.2 2280 SSDs, 60/120GB Capacities

Subject: Storage, Shows and Expos | January 9, 2018 - 07:32 PM |
Tagged: XPoint, Optane, Intel, CES 2018, CES, 800p, 60GB, 3D XPoint, 120gb

Intel broke news just now that they will be launching a larger version of their 16/32GB Optane Memory modules. The new 800P looks very much the same as its little brother but is designed to operate as a sole boot SSD. Mobile applications are also possible now as the 800P includes power management features that the Optane Memory modules lacked (as they were not intended for mobile).

DSC02412.jpg

We are under embargo as far as performance goes, but from what we know about how Optane parts scale, it's a safe bet that performance will be very close to what we've seen out of the Optane Memory parts. Warranty will be 5 years with an endurance of ~200GB per day. No word on cost at this time. Overall these though fit nicely between Optane Memory (16/32GB) and the 900P (280/480+GB) capacity points.

The elephant in the room is the capacity. While these can store more than the 16/32GB variants, 60/120GB may not be enough for most users out there. Fortunately, devices like these are great in Zx70 RAID or even VROC configurations!

Micron Launches 32GB NVDIMM-N - Intel Announces 3D XPoint NVDIMM

Subject: Storage | November 15, 2017 - 09:59 PM |
Tagged: NVDIMM, XPoint, 3D XPoint, 32GB, NVDIMM-N, NVDIMM-F, NVDIMM-P, DIMM

We're finally starting to see NVDIMM materialize beyond the unobtanium. Micron recently announced 32GB NVDIMM-N:

micron-nvdimm.png

These come with 32GB of DRAM plus 64GB of SLC NAND flash.

micron-nvdimm-modes.png

These are in the NVDIMM-N form factor and can offer some very impressive latency improvements over other non-volatile storage methods.

Next up is Intel, who recently presented at the UBS Global Technology Conference:

XPoint_DIMM.png

We've seen Intel's Optane in many different forms, and now it looks like we finally have a date for 3D XPoint DIMMs - 2nd half of 2018! There are lots of hurdles to overcome as the JEDEC spec is not yet finalized (and might not be by the time this launches). Motherboard and BIOS support also needs to be more widely adopted for this to take off as well.

Don't expect this to be in your desktop machine anytime soon, but one can hope!

Press blast for the Micron 32GB NVDIMM-N appears after the break.

Subject: Storage
Manufacturer: Intel

Introduction and Specifications

Back in April, we finally got our mitts on some actual 3D XPoint to test, but there was a catch. We had to do so remotely. The initial round of XPoint testing done (by all review sites) was on a set of machines located on the Intel campus. Intel had their reasons for this unorthodox review method, but we were satisfied that everything was done above board. Intel even went as far as walking me over to the very server that we would be remoting into for testing. Despite this, there were still a few skeptics out there, and today we can put all of that to bed.

DSC01136.jpg

This is a 750GB Intel Optane SSD DC P4800X - in the flesh and this time on *our* turf. I'll be putting it through the same initial round of tests we conducted remotely back in April. I intend to follow up at a later date with additional testing depth, as well as evaluating kernel response times across Windows and Linux (IRQ, Polling, Hybrid Polling, etc), but for now, we're here to confirm the results on our own testbed as well as evaluate if the higher capacity point takes any sort of hit to performance. We may actually see a performance increase in some areas as Intel has had several months to further tune the P4800X.

This video is for the earlier 375GB model launch, but all points apply here
(except that the 900P has now already launched)

Specifications:

specs.png

The baseline specs remain the same as they were back in April with a few significant notable exceptions:

The endurance figure for the 375GB capacity has nearly doubled to 20.5 PBW (PetaBytes Written), with the 750GB capacity logically following suit at 41 PBW. These figures are based on a 30 DWPD (Drive Write Per Day) rating spanned across a 5-year period. The original product brief is located here, but do note that it may be out of date.

We now have official sequential throughput ratings: 2.0 GB/s writes and 2.4 GB/s reads.

We also have been provided detailed QoS figures and those will be noted as we cover the results throughout the review.

Read on for our review of the 750GB P4800X!

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

It’s been two long years since we first heard about 3D XPoint Technology. Intel and Micron serenaded us with tales of ultra-low latency and very high endurance, but when would we have this new media in our hot little hands? We got a taste of things with Optane Memory (caching) back in April, and later that same month we got a much bigger, albeit remotely-tested taste in the form of the P4800X. Since April all was quiet, with all of us storage freaks waiting for a consumer version of Optane with enough capacity to act as a system drive. Sure we’ve played around with Optane Memory parts in various forms of RAID, but as we found in our testing, Optane’s strongest benefits are the very performance traits that do not effectively scale with additional drives added to an array. The preferred route is to just get a larger single SSD with more 3D XPoint memory installed on it, and we have that very thing today (and in two separate capacities)!

DSC01118.jpg

Rumor Central:

You might have seen various rumors centered around the 900P lately. The first is that the 900P was to supposedly support PCIe 4.0. This is not true, and after digging back a bit appears to be a foreign vendor mistaking / confusing PCIe X4 (4 lanes) with the recently drafted PCIe 4.0 specification. Another set of rumors centered around pre-order listings and potential pricing for the 280 and 480 GB variants of the 900P. We are happy to report that those prices (at the time of this writing) are way higher than Intel’s stated MSRP's for these new models. I’ll even go as far as to say that the 480GB model can be had for less than what the 280GB model is currently listed for! More on that later in the review.

Specifications:

Performance specs are one place where the rumors were all true, but since all the folks had to go on was a leaked Intel press deck slide listing figures identical to the P4800X, we’re not really surprised here.

specs.png

Lots of technical stuff above, but the high points are <10us typical latency (‘regular’ SSDs run between 60-100us), 2.5/2.0 GB/s sequential reads/writes, and 550k/500k random read/write performance. Yes I know, don’t tell me, you’ve seen higher sequentials on smaller form factor devices. I agree, and we’ve even seen higher maximum performance from unreleased 3D XPoint-equipped parts from Micron, but Intel has done what they needed to do in order to make this a viable shipping retail product, which likely means sacrificing the ‘megapixel race’ figures in favor of offering the lowest possible latencies and best possible endurance at this price point.

Packaging:

DSC05837.jpg

Packaging is among the nicest we’ve seen from an Intel SSD. It actually reminds me of how the Fusion-io ioDrives used to come.

RSI Star Citizen Sabre Raven Ship.jpg

Also included with the 900P is a Star Citizen ship. The Sabre Raven has been a topic of gossip and speculation for months now, and it appears to be a pretty sweet looking fighter. For those unaware, Star Citizen is a space-based MMO, and with a ‘ship purchase’ also comes a license to play the game. The Sabre Raven counts as such a purchase and apparently comes with lifetime insurance, meaning it will always be tied to your account in case it gets blown up doing data runs. Long story short, you get the game for free with the purchase of a 900P.

Read on for our full review of the Intel Optane SSD 900P (in both capacities)!