AMD Ryzen 7 1700X Selling for $333

Subject: Processors | May 9, 2017 - 03:13 PM |
Tagged: ryzen, amd, 1700X

A little birdie sent me a note this afternoon that the AMD Ryzen 7 1700X processor was selling on Amazon.com for just $333! Considering the launch price of that CPU was $399 just two months ago, a $60-70 discount makes this platform all the more compelling for consumers looking to build a new PC. Coupling that with the overclocking performance we saw from our Ryzen 1700 sample, you should be able to meet or exceed expectations with the 1700X model.

41FLnkH4SJL (1).jpg

This link led me down a bit of a rabbit hole as I wanted to see where a solid build would stand using that processor and a focus on budget. Now, keep in mind that this was put together rather hastily this afternoon, but here's what I came up with.

  Ryzen 7 1700X Build
Processor AMD Ryzen 7 1700X - $333
Cooler Thermaltake Contac Silent - $24
Motherboard ASUS Prime B350-Plus - $99
Memory G.Skill Ripjaws 16GB DDR4-3000 - $118
Graphics Card EVGA GeForce GTX 1050 Ti 4GB - $149
Storage Samsung 850 EVO 250GB - $107
Case Corsair 200R ATX Mid Tower Case - $56
Power Supply Corsair CX 500 watt - $59
Total Price $945 - Amazon.com Full Cart

For the base of the system, you can pick up the Ryzen 7 1700X processor for $333, a great B350-based motherboard from ASUS for $99 and 16GB of DDR4 memory running at 3000 MHz for just $118. Getting that memory at higher clock speeds is important for optimal Ryzen performance - hunt around to find the best deal! That's just $550 for the heart of a system that could power anything from the GTX 1050 Ti I included above to the GTX 1080 Ti if you are pushing the limits of graphics performance. 

If you try to stay within a reasonable budget, as I did above, you can build a from-scratch machine for under $1000 with some impressive specifications and capabilities. The GTX 1050 Ti will get you peak 1080p gaming capability while the 8-cores and 16-threads of the Ryzen 7 1700X will improve any workstation-class or multimedia workloads. 

Separately, but interestingly, the gang at 3DCenter.org posted the results of a survey taken about the Ryzen 5 processor launch, measuring the readers reactions to the release. In it, 83.9% of the audience looked upon the Ryzen 5 favorably, 9.4% as average and 6.7% negatively. If you compare that to the Ryzen 7 launch (74.6% favorable, 17.5% average, 7.9% negative) it seems that Ryzen 5 was better received than its big brother. But if you look back to October 2011 when the same survey was run about AMD Bulldozer, only 6.8% saw the CPU launch as favorable (!!). The last CPU launch that received nearly as positive a reaction as Ryzen 5/7 was the Sandy Bridge CPU back in January of 2011.

Umfrage-Auswertung-Wie-ist-der-Ersteindruck-zu-AMDs-Ryzen-5.png

Obviously this survey isn't a predictor of success or failure exactly, but it does point to an audience that is incredibly receptive to the new AMD processors. My own experience tells me that these numbers are fairly accurate to the mood about Ryzen, even after the 1080p gaming fiasco that circulates to this day. Interest and reaction are great for a company that needs to make in-roads in the market, but converting that consumer interest into purchases is the key for AMD going forward.

Author:
Subject: Processors
Manufacturer: AMD

What Makes Ryzen Tick

We have been exposed to details about the Zen architecture for the past several Hot Chips conventions as well as other points of information directly from AMD.  Zen was a clean sheet design that borrowed some of the best features from the Bulldozer and Jaguar architectures, as well as integrating many new ideas that had not been executed in AMD processors before.  The fusion of ideas from higher performance cores, lower power cores, and experience gained in APU/GPU design have all come together in a very impressive package that is the Ryzen CPU.

zen_01.jpg

It is well known that AMD brought back Jim Keller to head the CPU group after the slow downward spiral that AMD entered in CPU design.  While the Athlon 64 was a tremendous part for the time, the subsequent CPUs being offered by the company did not retain that leadership position.  The original Phenom had problems right off the bat and could not compete well with Intel’s latest dual and quad cores.  The Phenom II shored up their position a bit, but in the end could not keep pace with the products that Intel continued to introduce with their newly minted “tic-toc” cycle.  Bulldozer had issues  out of the gate and did not have performance numbers that were significantly greater than the previous generation “Thuban” 6 core Phenom II product, much less the latest Intel Sandy Bridge and Ivy Bridge products that it would compete with.

AMD attempted to stop the bleeding by iterating and evolving the Bulldozer architecture with Piledriver, Steamroller, and Excavator.  The final products based on this design arc seemed to do fine for the markets they were aimed at, but certainly did not regain any marketshare with AMD’s shrinking desktop numbers.  No matter what AMD did, the base architecture just could not overcome some of the basic properties that impeded strong IPC performance.

52_perc_design_opt.png

The primary goal of this new architecture is to increase IPC to a level consistent to what Intel has to offer.  AMD aimed to increase IPC per clock by at least 40% over the previous Excavator core.  This is a pretty aggressive goal considering where AMD was with the Bulldozer architecture that was focused on good multi-threaded performance and high clock speeds.  AMD claims that it has in fact increased IPC by an impressive 54% from the previous Excavator based core.  Not only has AMD seemingly hit its performance goals, but it exceeded them.  AMD also plans on using the Zen architecture to power products from mobile products to the highest TDP parts offered.

 

The Zen Core

The basis for Ryzen are the CCX modules.  These modules contain four Zen cores along with 8 MB of shared L3 cache.  Each core has 64 KB of L1 I-cache and 32 KB of D-cache.  There is a total of 512 KB of L2 cache.  These caches are inclusive.  The L3 cache acts as a victim cache which partially copies what is in L1 and L2 caches.  AMD has improved the performance of their caches to a very large degree as compared to previous architectures.  The arrangement here allows the individual cores to quickly snoop any changes in the caches of the others for shared workloads.  So if a cache line is changed on one core, other cores requiring that data can quickly snoop into the shared L3 and read it.  Doing this allows the CPU doing the actual work to not be interrupted by cache read requests from other cores.

ccx.png

l2_cache.png

l3_cache.png

Each core can handle two threads, but unlike Bulldozer has a single integer core.  Bulldozer modules featured two integer units and a shared FPU/SIMD.  Zen gets rid of CMT for good and we have a single integer and FPU units for each core.  The core can address two threads by utilizing AMD’s version of SMT (symmetric multi-threading).  There is a primary thread that gets higher priority while the second thread has to wait until resources are freed up.  This works far better in the real world than in how I explained it as resources are constantly being shuffled about and the primary thread will not monopolize all resources within the core.

Click here to read more about AMD's Zen architecture in Ryzen!

Report: Leaked AMD Ryzen 7 1700X Benchmarks Show Strong Performance

Subject: Processors | February 21, 2017 - 10:54 AM |
Tagged: ryzen, rumor, report, R7, processor, leak, IPC, cpu, Cinebench, benchmark, amd, 1700X

VideoCardz.com, continuing their CPU coverage of the upcoming Ryzen launch, has posted images from XFASTEST depicting the R7 1700X processor and some very promising benchmark screenshots.

AMD-Ryzen-7-1700X.jpg

(Ryzen 7 1700X on the right) Image credit XFASTEST via VideoCardz

The Ryzen 7 1700X is reportedly an 8-core/16-thread processor with a base clock speed of 3.40 GHz, and while overall performance from the leaked benchmarks looks very impressive, it is the single-threaded score from the Cinebench R15 run pictured which really makes this CPU look like major competition for Intel with IPC.

AMD-Ryzen-7-1700X-Cinebench.jpg

Image credit XFASTEST via VideoCardz

An overall score of 1537 is outstanding, placing the CPU almost even with the i7-6900K at 1547 based on results from AnandTech:

AnandTech_Benchmarks.png

Image credit AnandTech

And the single-threaded performance score of the reported Ryzen 7 1700X is 154, which places it above the i7-6900K's score of 153. (It is worth noting that Cinebench R15 shows a clock speed of 3.40 GHz for this CPU, which is the base, while CPU-Z is displaying 3.50 GHz - likely indicating a boost clock, which can reportedly surpass 3.80 GHz with this CPU.)

Other results from the reported leak include 3DMark Fire Strike, with a physics score of 17,916 with Ryzen 7 1700X clocking in at ~3.90 GHz:

AMD-Ryzen-7-1700X-Fire-Strike-Physics.png

Image credit XFASTEST via VideoCardz

We will know soon enough where this and other Ryzen processors stand relative to Intel's current offerings, and if Intel will respond to the (rumored) price/performance double whammy of Ryzen. An i7-6900K retails for $1099 and currently sells for $1049 on Newegg.com, and the rumored pricing (taken from Wccftech), if correct, gives AMD a big win here. Competition is very, very good!

wccftech_chart.PNG

Chart credit Wccftech.com

Source: VideoCardz