Philips Launching 49" 32:9 492P8 Ultra-wide Monitor Next Year

Subject: Displays | September 11, 2017 - 11:38 PM |
Tagged: va, ultrawide, productivity, philips, business, 32:9, 1080p gaming

Philips recently revealed a massive 49” ultra-wide monitor slated for release in the second half of next year. The so-called Philips 492P8 takes the bigger is better approach with its 32:9 aspect ratio ultra-wide monitor based on the same VA (vertical alignment) panel as Samsung’s more expensive (and feature-full) CH90 QLED. With a planned MSRP of $1,077, Philips has cut a few features in its model namely support for AMD’s FreeSync 2 and Samsung’s QLED backlighting. It Is not yet clear whether or not the monitor will retain the same 144Hz refresh rate and high dynamic range (HDR).

Philips 492P8 Ultrawide.jpg

The 49-inch diagonal monitor features a 3840 x 1080 resolution and a 1800R curvature. The 492P8 is rated at a maximum brightness of 600 cd/m2 and a contrast ratio of 5,000:1. The monitor is based on a VA panel which is a compromise between the fast response times and refresh rates of TN and the colors and viewing angles of IPS (and PLS) with strong contrast, good viewing angles, decent refresh rates (response times can be an issue in gaming as far as possible motion blur), and the ability to crank up the brightness. With the axing of FreeSync 2 support, this may not be the best option for gamers wanting an ultra-wide, but this monitor is sure to find a place in the corporate world with lots of side-by-side windows open in brightly lit office environments. Depending on reviews it could also be good for flight sims, 4X games, and other gaming as well.

The monitor features DisplayPort, HDMI, VGA, and USB Type-C display inputs (one each) as well as (using the USB Type-C port to connect to a PC) a two port USB 3.0 hub, one Ethernet jack, and two 3.5mm audio jacks (one headphone and one microphone).

The Philips 492P8 32:9 VA monitor is slated for a Q2 2018 release with a MSRP of $1,077 (C899). OF course, there is plenty of time for specifications and pricing to change between now and then, but it seems Philips is aiming for a budget option under $1100.

I would have liked to see more vertical resolution (I mean, why not at least 1200p? heh) but you can’t have everything, especially for cheap. What do you think about the 32:9 aspect ratio? Also, would you put a 49" ~34 pound monitor on your desk?

Also read: Samsung Announces FreeSync 2 HDR Displays, includes C49HG90 49-in UltraWide!

Source: PC Gamer
Author:
Manufacturer: AMD

We are up to two...

UPDATE (5/31/2017): Crystal Dynamics was able to get back to us with a couple of points on the changes that were made with this patch to affect the performance of AMD Ryzen processors.

  1. Rise of the Tomb Raider splits rendering tasks to run on different threads. By tuning the size of those tasks – breaking some up, allowing multicore CPUs to contribute in more cases, and combining some others, to reduce overheads in the scheduler – the game can more efficiently exploit extra threads on the host CPU.
     
  2. An optimization was identified in texture management that improves the combination of AMD CPU and NVIDIA GPU.  Overhead was reduced by packing texture descriptor uploads into larger chunks.

There you have it, a bit more detail on the software changes made to help adapt the game engine to AMD's Ryzen architecture. Not only that, but it does confirm our information that there was slightly MORE to address in the Ryzen+GeForce combinations.

END UPDATE

Despite a couple of growing pains out of the gate, the Ryzen processor launch appears to have been a success for AMD. Both the Ryzen 7 and the Ryzen 5 releases proved to be very competitive with Intel’s dominant CPUs in the market and took significant leads in areas of massive multi-threading and performance per dollar. An area that AMD has struggled in though has been 1080p gaming – performance in those instances on both Ryzen 7 and 5 processors fell behind comparable Intel parts by (sometimes) significant margins.

Our team continues to watch the story to see how AMD and game developers work through the issue. Most recently I posted a look at the memory latency differences between Ryzen and Intel Core processors. As it turns out, the memory latency differences are a significant part of the initial problem for AMD:

Because of this, I think it is fair to claim that some, if not most, of the 1080p gaming performance deficits we have seen with AMD Ryzen processors are a result of this particular memory system intricacy. You can combine memory latency with the thread-to-thread communication issue we discussed previously into one overall system level complication: the Zen memory system behaves differently than anything we have seen prior and it currently suffers in a couple of specific areas because of it.

In that story I detailed our coverage of the Ryzen processor and its gaming performance succinctly:

Our team has done quite a bit of research and testing on this topic. This included a detailed look at the first asserted reason for the performance gap, the Windows 10 scheduler. Our summary there was that the scheduler was working as expected and that minimal difference was seen when moving between different power modes. We also talked directly with AMD to find out its then current stance on the results, backing up our claims on the scheduler and presented a better outlook for gaming going forward. When AMD wanted to test a new custom Windows 10 power profile to help improve performance in some cases, we took part in that too. In late March we saw the first gaming performance update occur courtesy of Ashes of the Singularity: Escalation where an engine update to utilize more threads resulted in as much as 31% average frame increase.

Quick on the heels of the Ryzen 7 release, AMD worked with the developer Oxide on the Ashes of the Singularity: Escalation engine. Through tweaks and optimizations, the game was able to showcase as much as a 30% increase in average frame rate on the integrated benchmark. While this was only a single use case, it does prove that through work with the developers, AMD has the ability to improve the 1080p gaming positioning of Ryzen against Intel.

rotr-screen4-small.jpg

Fast forward to today and I was surprised to find a new patch for Rise of the Tomb Raider, a game that was actually one of the worst case scenarios for AMD with Ryzen. (Patch #12, v1.0.770.1) The patch notes mention the following:

The following changes are included in this patch

- Fix certain DX12 crashes reported by users on the forums.

- Improve DX12 performance across a variety of hardware, in CPU bound situations. Especially performance on AMD Ryzen CPUs can be significantly improved.

While we expect this patch to be an improvement for everyone, if you do have trouble with this patch and prefer to stay on the old version we made a Beta available on Steam, build 767.2, which can be used to switch back to the previous version.

We will keep monitoring for feedback and will release further patches as it seems required. We always welcome your feedback!

Obviously the data point that stood out for me was the improved DX12 performance “in CPU bound situations. Especially on AMD Ryzen CPUs…”

Remember how the situation appeared in April?

rotr.png

The Ryzen 7 1800X was 24% slower than the Intel Core i7-7700K – a dramatic difference for a processor that should only have been ~8-10% slower in single threaded workloads.

How does this new patch to RoTR affect performance? We tested it on the same Ryzen 7 1800X benchmarks platform from previous testing including the ASUS Crosshair VI Hero motherboard, 16GB DDR4-2400 memory and GeForce GTX 1080 Founders Edition using the 378.78 driver. All testing was done under the DX12 code path.

tr-1.png

tr-2.png

The Ryzen 7 1800X score jumps from 107 FPS to 126.44 FPS, an increase of 17%! That is a significant boost in performance at 1080p while still running at the Very High image quality preset, indicating that the developer (and likely AMD) were able to find substantial inefficiencies in the engine. For comparison, the 8-core / 16-thread Intel Core i7-6900K only sees a 2.4% increase from this new game revision. This tells us that the changes to the game were specific to Ryzen processors and their design, but that no performance was redacted from the Intel platforms.

Continue reading our look at the new Rise of the Tomb Raider patch for Ryzen!

Author:
Subject: Processors
Manufacturer: Various

Application Profiling Tells the Story

It should come as no surprise to anyone that has been paying attention the last two months that the latest AMD Ryzen processors and architecture are getting a lot of attention. Ryzen 7 launched with a $499 part that bested the Intel $1000 CPU at heavily threaded applications and Ryzen 5 launched with great value as well, positioning a 6-core/12-thread CPU against quad-core parts from the competition. But part of the story that permeated through both the Ryzen 7 and the Ryzen 5 processor launches was the situation surrounding gaming performance, in particular 1080p gaming, and the surprising delta  that we see in some games.

Our team has done quite a bit of research and testing on this topic. This included a detailed look at the first asserted reason for the performance gap, the Windows 10 scheduler. Our summary there was that the scheduler was working as expected and that minimal difference was seen when moving between different power modes. We also talked directly with AMD to find out its then current stance on the results, backing up our claims on the scheduler and presented a better outlook for gaming going forward. When AMD wanted to test a new custom Windows 10 power profile to help improve performance in some cases, we took part in that too. In late March we saw the first gaming performance update occur courtesy of Ashes of the Singularity: Escalation where an engine update to utilize more threads resulted in as much as 31% average frame increase.

ping-amd.png

As a part of that dissection of the Windows 10 scheduler story, we also discovered interesting data about the CCX construction and how the two modules on the 1800X communicated. The result was significantly longer thread to thread latencies than we had seen in any platform before and it was because of the fabric implementation that AMD integrated with the Zen architecture.

This has led me down another hole recently, wondering if we could further compartmentalize the gaming performance of the Ryzen processors using memory latency. As I showed in my Ryzen 5 review, memory frequency and throughput directly correlates to gaming performance improvements, in the order of 14% in some cases. But what about looking solely at memory latency alone?

Continue reading our analysis of memory latency, 1080p gaming, and how it impacts Ryzen!!