Flash player not detected. Click here to install flash.
« 1 2 3 4 5 »

Even More PC Controller Choice It Seems... Nintendo Switch

Subject: General Tech | March 6, 2017 - 07:01 AM |
Tagged: switch, Nintendo, gamepad

While mouse and keyboard is awesome for many games, a few benefit from the layout of a gamepad (or the way it’s used). There was a drought in these for a few years, particularly around the ~2007 time-frame, but this console generation provides us PC gamers with quite a few competent options. When they launched, both the PS4 and the Xbox One allowed their controllers to be used on the PC, and both eventually provided wireless adapters to make it function. Microsoft did it for Windows 10, and Sony did it for PlayStation Now. Even Valve got their Steam Controller out there, which is definitely an alternate alternative, like it or hate it. Personally, I’ve never tried.

While Nintendo hasn’t really ever supported the PC market, apart from, like, Mario is Missing, their Bluetooth-based controllers also never really tried to block PCs from using them. Apparently, the Nintendo Switch is no exception, and its Pro Controller seemingly just connects with the old gamepad API.

This isn’t supported, so it’s probably best to not go out and buy it for the PC, but feel free to try it if you already have a Switch and Pro Controller (and a Bluetooth adapter for your PC).

Raspberry Pi Zero W Adds Built In Wireless Radios

Subject: General Tech | March 5, 2017 - 04:24 PM |
Tagged: raspberry pi zero, single board computer, sbc, broadcom

The Raspberry Pi Foundation recently introduced a $10 Pi Zero W which resembles the $5 single board Pi Zero computer it launched in 2015 but adds built in Wi-Fi and Bluetooth radios.

ZeroW~2.jpg

At the heart of the Raspberry Pi Zero W is a 1GHz single core Broadcom BCM2835 application processor and 512MB of RAM. Storage is handled by s micro SD card slot. The tiny board includes the following I/O options:

  • 1 x Mini HDMI
  • 1 x Micro USB OTG
  • 1 x Micro USB for power
  • 1 x 40-pin HAT compatible header
  • 1 x CSI camera connector
  • 1 x Composite video header
  • 1 x reset header

The Pi Zero W uses the same Cypress CYW43438 chip as the Pi 3 Model B and offers 802.11n Wi-Fi and Bluetooth 4.0. According to the Raspberry Pi Foundation, they found that many users were using USB wireless dongles along with a HID (keyboard/mouse) and they needed to carry around a hub or integrate it into their project. Adding built in wireless frees up the single Micro USB port for ither devices and hopefully allows smaller devices that use a Pi Zero as its brains.

Per RasPi.TV’s testing, the new Pi Zero W uses approximately 20mA more power than the Pi Zero which the site attributes to the wireless radios. While it more power than the previous model it is still half that of the Raspberry Pi 3 B. Specifically, the Pi Zero W pulls 120mA at idle and up to 170mA when playing back a 1080p video. Recording 1080p video from a camera uses ~230 mA. The SBC is rated at 0.6W to 1.2W (120 to 230 mA at 5.19V).

A modular official case is being released alongside the new board. US residents will be able to pick up the $10 single board computer at Adafruit, CanaKit, and Micro Center.

The Pi Zero has been used in a large variety of projects including robotics, arcade games, home automation and motion sensing cameras IoT, information displays, and electric skateboards. Integrating the wireless radio should make similar projects just a bit easier to out together.

NETGEAR Issues Non-Urgent Recall of Some Enterprise Devices

Subject: Networking, Storage | March 4, 2017 - 11:57 PM |
Tagged: netgear, Intel, Avoton, recall

While this is more useful for our readers in the IT field, NETGEAR has issued a (non-urgent) recall on sixteen models of Rackmount NAS and Wireless Controller devices. It looks like the reason for this announcement is to maintain customer relations. They are planning to reach out to customers “over the next several months” to figure out a solution for them. Note the relaxed schedule.

netgear-2017-RN3130.png

The affected model numbers are:

  1. RN3130
  2. RN3138
  3. WC7500 Series:
    • WC7500-10000S, WC7500-100INS, WC7500-100PRS, WB7520-10000S, WB7520-100NAS, WB7530-10000S, WB7530-100NAS
  4. WC7600 Series:
    • WC7600-20000S, WC7600-200INS, WC7600-200PRS, WB7620-10000S, WB7620-100NAS, WB7630-10000S, WB7630-100NAS

The Register noticed that each of these devices contain Intel’s Avoton-based Atom processors. You may remember our coverage from last month, which also sourced The Register, that states these chips may fail to boot over time. NETGEAR is not blaming Intel for their recall, but gave The Register a wink and a nudge when pressed: “We’re not naming the vendor but it sounds as if you’ve done your research.”

Again, while this news applies to enterprise customers and it’s entirely possible that Intel (if it actually is the Avoton long-term failure issue) is privately supporting them, it’s good to see NETGEAR being honest and upfront. Problems will arise in the tech industry; often (albeit not always) what matters more is how they are repaired.

Source: NETGEAR

BIOSTAR Shows Mini-ITX AM4 Motherboard for AMD Ryzen

Subject: Motherboards | March 4, 2017 - 11:32 AM |
Tagged: X370GTN, x370, small form factor, SFF, ryzen, racing, motherboard, mITX, mini-itx, B350GTN, b350, amd, AM4

The first images of a mini-ITX AM4 motherboard are here, courtesy of BIOSTAR (via ComputerBase). Part of their second-generation RACING-series of gaming motherboards, BIOSTAR is now the first company to show an AMD Ryzen-capable mini-ITX option with their X370GTN.

x370gtn_motherboard_1.jpg

Image credit: ComputerBase

There had been mention of an upcoming mITX board for AMD Ryzen CPUs from BIOSTAR, with a (rather low-key) mention of such a product in a recent company press release (“the exciting new RACING X370GTN in the mini-ITX form factor will also be available”), and these images from the company's RACING event are now circulating along with the specs of two different mITX offerings.

x370gtn_motherboard_2.jpg

Image credit: ComputerBase

There will in fact be two mini-ITX motherboards, with both X370 (shown) and the lower-end B350 chipsets (with the RACING B350GTN). ComputerBase provided slides with specifications (via Zolkorn, Thai language) who covered the BIOSTAR event:

x370gtn.jpg

Image credit: Zolkorn via ComputerBase

b350gtn.jpg

Image credit: Zolkorn via ComputerBase

BIOSTAR has not announced availability or pricing of their mini-ITX Ryzen boards yet, but given the pent-up demand for mini-ITX solutions for enthusiast AMD processors (with AM3 conspicuously absent from mITX), this is great news for small form-factor enthusiasts.

Source: ComputerBase

GamersNexus Tears Down a Nintendo Switch

Subject: Systems, Mobile | March 4, 2017 - 07:01 AM |
Tagged: Tegra X1, teardown, switch, nvidia, Nintendo

Here at PC Perspective, videos of Ryan and Ken dismantling consoles on their launch date were some of our most popular... ever. While we didn’t do one for the Nintendo Switch, GamersNexus did, and I’m guessing that a segment of our audience would be interested in seeing what the device looks like when dismantled.

Credit: GamersNexus

As he encounters many chips, he mentions what, if anything, is special about them based on their part numbers. For instance, the NVIDIA SoC is listed as A2, which is apparently different from previous Maxwell-based Tegra X1 SoCs, but it’s unclear how. From my perspective, I can think of three possibilities: NVIDIA made some customizations (albeit still on the Maxwell architecture) for Nintendo, NVIDIA had two revisions for their own purposes and Nintendo bought the A2, or the A2 shipped with NVIDIA's Maxwell-based Shield and my Google-fu is terrible.

Regardless, if you’re interested, it should be an interesting twenty-or-so minutes.

Source: GamersNexus

PSA: AMD XFR Enabled On All Ryzen CPUs, X SKUs Have Wider Range

Subject: Processors | March 4, 2017 - 06:00 AM |
Tagged: xfr, turbo, sensemi, ryzen, overclocking, amd

Following the leaks and official news and reviews of AMD's Ryzen processors there were a few readers asking for clarity on the eXtended Frequency Range (XFR) technology and whether or not it is enabled on all Ryzen CPUs or only the X models. After quite a bit of digging through forums and contradictory articles, I believe I have the facts in hand to answer those questions. In short, XFR is supported on all Ryzen processors (at least all the Ryzen 7 CPUs released so far) including the non-X Ryzen 7 1700; however the X SKUs get a bigger boost from XFR than the non-X model(s).

Specifically, the Ryzen 7 1700X and Ryzen 7 1800X when paired with a high end air or water cooler is able to boost up to an additional 100 MHz over the 4 GHz advertised boost clock while the Ryzen 7 1700 is limited to an XFR boost of up to 50 MHz so long as there is thermal headroom. Interestingly, the Extended Frequency Range boosts are done in 25 MHz increments (and likely achieved by adjusting the multiplier by 0.25x).

AMD XFR.jpg

How does this all work though? Well, with Ryzen AMD introduced a new suite of technologies it calls "SenseMI" which, despite the questionable name (heh), puts a lot of intelligence into the processor and builds on the paths AMD started down with Carrizo and Excavator designs. The five main technologies are Pure Power, Precision Boost, Extended Frequency Range (XFR), Neural Net Prediction, and Smart Prefetch. The first three are important when talking about XFR.

With Ryzen AMD has embedded a number of sensors throughout the chip that accurately measure temperatures, clock speeds, and voltages within 1°C, 1mA, 1mW, 1mV and it has connected all the sensors together using its Infinity Fabric. Pure Power lets AMD make localized adaptive adjustments to optimize power usage without negatively affecting performance. Precision Boost is AMD's equivalent to Intel's Turbo Boost and it is built on top of Pure Power's sensor network. Precision Boost enables a Ryzen CPU to dynamically clock up beyond the base clock speed across all cores or clock even further across two cores. Lightly threaded workloads will benefit from the latter while workloads using any more than two threads will get the all core boost, so there is not a lot of granularity in number of cores vs allowed boost but there does not really need to be and the Precision Boost is more granular than Intel's Turbo Boost in clock speed bumps of 25MHz increments versus 100 MHz increments up to the maximum allowed Precision Boost clock. As an example, the Ryzen 7 1800X has a base clock of 3.6 GHz and so long as there is thermal headroom it can adjust the clock speed up by 25 MHz steps to 3.7 GHz across all eight cores or up to as much as 4.0 GHz on two cores.

From there XFR allows the processor to clock beyond the 2 core Precision Boost (XFR only works to increase the boost of the two core turbo not the all core turbo) and as temperatures decrease the allowed XFR increases. While initial reports and slides from AMD suggested XFR would scale with the cooler (air, water, LN2, LHe) with no upper limit aside from temperature and other sensor input, it appears AMD has taken a step back and limited X series Ryzen 7 chips to a maximum XFR boost of 100 MHz over the two core Precision Boost and non-X series Ryzen 7 processors to a maximum XFR boost of 50 MHz over the maximum boosted two core clock speed. The Ryzen 7 1700 will have two extra steps above its two core boost so while the chip has a base clock of 3.0 GHz, Precision Boost can take all eight cores to 3.1GHz or two cores to 3.7 GHz. Further, so long as temperatures are still in check XFR can take those two boosted cores to 3.75 GHz.

AMD Ryzen 1800X XFR Boost.jpg

XFR will be a setting that you are able to toggle on and off via a motherboard setting, and some motherboards may have the feature turned on by default. Unfortunately, if you choose to manually overclock you will lose XFR functionality (and boost). Further, Precision Boost and XFR are connected and you are not able to turn off one but not the other (you either get both or nothing). Note that if you overclock using AMD's "Ryzen Master" software utility, it will also disable Precision Boost and XFR, but the lower power C-states will stay enabled which may be desirable if you want the power bill and room to cool down when not gaming or creating content.

I would expect as yields and the binning processes improve for Ryzen AMD may lift or extend the XFR limits either with a product refresh (not sure if a micro-code update would be possible) or maybe only in the upcoming hexa-core and quad core Ryzen 5 and Ryzen 3 processors that have less cores and more headroom for overclocking. That is merely speculation however. Ryzen 5 and Ryzen 3 should support XFR on both X and non-X models, but it is too early to know or say what the XFR boost will be.

XFR is neat though not as big of a deal as I originally thought it to be without limits, and as many expected manual overclocking is still going to be the way to go. This is not all bad news though, because it means that the much cheaper Ryzen 7 1700 just got a lot more attractive. You give up a 50 MHz XFR boost that you can't use anyway because you are going to manually overclock and you gamble a bit on getting a decently binned chip that can hit R7 1800X clock speeds, but you save $170 that you can put towards a better motherboard or a better graphics card (or a second one for CrossFire - even on B350).

I am still waiting on our overclocking results as well as Kyle's overclocking results when it comes to the Ryzen 7 1700, but several other sites are reporting success at hitting at least 4.0 GHz (though not many results over 4.0 or 4.1 GHz which isn't unexpected since these are not the highest binned chips and yields are still young so bins are more real/based on silicon and not just for product segmentation but most can hit the higher speeds at x power, v voltage, and n temperature et al). For example, Legit Reviews reports that they were able to hit manually overclock a R7 1700 to 4.0 GHz on all cores at 1.3875 volts. They were able to keep the non-X Ryzen chip stable with those settings on both aftermarket air and AIO water coolers.

prec_boost.png

AMD's Ryzen Master overclocking software lets you OC and setup CPU and memory profiles from your OS.

More on overclocking: Tom's Hardware has posted that, according to AMD, the safe voltage ceiling for overclocking is 1.35V if you want the CPU to last, but that up to 1.45V CPU voltage is "sustainable". Further, note that is is recommended not to set the SOC Voltage higher than 1.2 volts. Also, much like Intel's platform, it is possible to adjust the base clock (BCLCK) but you may run into stability problems with the rest of the system if you push this too far outside expected specifications (PC Gamer claims you can set this up to 140 MHz though so AM4/Ryzen may be more forgiving in this area than Intel. Edit: The highest figure I've seen so far is 106.4 MHz being stable before the rest of the system gets too far out of spec and becomes unstable. The main benefit to adjusting this is to support overclocked RAM above 3200 MHz so unless you need that your overclocking efforts are probably better spent adjusting the multiplier. /edit). Finally, when manually overclocking you will be able to turn off SMT and/or turn off cores in 2s (e.g. disable 2 cores or disable 4 cores, you can't disable in single numbers but groups of two).

Hopefully this helps to clear up the XFR confusion. If you do not need guaranteed clocks with a bonus XFR boost for a stable workstation build, saving money and going with the Ryzen 7 1700 and manually overclocking it to at least attempt to reach R7 1700X or 1800X speeds seems like the way to go for enthusiasts that are considering making the jump to AM4 especially if you enjoy tinkering with things like overclocking. There's nothing wrong with going with the higher priced and binned chips if you want to go that route, but don't do it for XFR in my opinion.

What are your thoughts? Are you planning to overclock your Ryzen CPU or do you think the Precision Boost and XFR is enough?

Source: Ars Technica

HyperX Alloy FPS mechanical keyboard, fit for the ham handed

Subject: General Tech | March 3, 2017 - 03:12 PM |
Tagged: mechanical keyboard, input, HyperX ALLOY FPS, Cherry MX

The HyperX Alloy FPS is a R LED, no Gs or Bs, but you can cycle through a variety of modes using the Function key which replaces the Windows key on the right side of the keyboard.  The shell is aluminium, strong and light for those who tend to abuse their keyboards and the CherryMX switches are firmly attached and so should survive a few rage-quits.  Modders Inc liked the keyboard overall and the price is reasonable, $80 for Blue switches or $100 if you prefer Red or Brown.  Check out the full review for more specifics.

DSC_9948.jpg

"Over the last couple of years the gaming division of Kingston; HyperX has been working hard to bust into the peripherals market. Their products started off with mouse pads and headsets. In September 2016, the HyperX Alloy FPS was released. The HyperX Allow FPS features a compact, minimalist design to maximize desk space and portability."

Here is some more Tech News from around the web:

Tech Talk

 

Source: Modders Inc

LEPA's Neopets, colourful coolers to take care of your system

Subject: Cases and Cooling | March 3, 2017 - 02:12 PM |
Tagged: lepa, NEOllusion RGB, air cooler, RGB

LEPA have launched a new series of air coolers, the NEOllusion RGB which comes with a remote control so you can create a fancy light show inside your case.  The screenshots at [H]ard|OCP show that the lights the heatsink produces are quite bright and will certainly be visible even from a distance.  For those of you who are more interested in cooling performance than pretty lights, the NEOllusion stands 126x40x161.7mm, with a 120mm fan and a recommended max TDP of 200W.  Tests show the cooler favours form over function, keeping temperatures in control but not offering competitive performance; it does prefer visual impact over audio effects as it is one of the quietest coolers [H] have tested.  If you are the type to desire a quiet light show in your case, check out the full review.

14858249220ZhLYFiAYf_1_1.png

"LEPA comes to us today with a new air cooler that is specifically focused on users that are looking for a little more bling inside their desktop computer build. And while really cool lights may or may not be your thing, we wanted to see just how the NEOllusion performed when it comes to its primary function, CPU cooling."

Here are some more Cases & Cooling reviews from around the web:

CASES & COOLING

Source: [H]ard|OCP

Fanatec Releases ClubSport Wheel Base V2.5

Subject: General Tech | March 3, 2017 - 01:48 PM |
Tagged: xbox one, wheels, wheel base, rally, racing, PC, Fanatec, ClubSport V2.5, ClubSport V2

Today Fanatec announced the immediate availability of the ClubSport Wheel Base V2.5.  Some months ago I reviewed the original ClubSport V2 and I was highly impressed by its overall quality, build, feedback, and accuracy.  It is a monstrous unit that commanded an sizeable price.  Fanatec has built evolved and improved the V2 unit and rebranded it the V2.5.
 
While the V2.5 is not redesigned from the ground up, it has some greatly improved features from the last gen.  It has a new motor that promises better response and feedback force and feel.  They next updated the USB connection so that it has an update rate of 1000 Hz for greater driving accuracy and response time.
 
CSW-V2-5-Big1-1000x666.png
 
Perhaps the most impressive news about this release is the lowering of the price for the V2.5 base.  Fanatec claims that greater demand and efficiency in production has allowed them to lower the price of the new base vs. the old.  The new price is $499.95 which is quite a bit lower than the old price which I believe was in the $650 range.  Anyone that has pre-ordered the V2 units will be getting upgraded to the V2.5 parts.  I am unsure how Fanatec is handling possible refunds in these cases, but the assumption is that end users won't be ripped off.
 
This is a welcome surprise in terms of improvements and a lowering of price.  The V2 was a pretty spectacular part and it looks as though this one exceeds it in every way.  It still retains the all metal construction and features a new faceplate with the Fanatec logo etched in.  Certainly a lovely piece of gear for those that take racing seriously.

You can purchase it online from the Fanatec site!

Click to read the entire press release!

Source: Fanatec

Huzzah! Delayed reboots are returning to Win10 Home

Subject: General Tech | March 3, 2017 - 01:33 PM |
Tagged: microsoft, windows 10

If you are using Windows 10 Pro or Enterprise, you may have already disabled the automatic reboot function after updates are installed but for Home users after the Anniversary update, that has not been possible.  It turns out there are a lot of users quite upset with unplanned reboots, especially those who leave their computers running overnight or while they are away.  Microsoft have accepted this feedback and will return the ability to delay reboots to owners of the Home Edition in their next update.  In the meantime, The Register describes a way in which you can regain a little more control over automatic reboots with your current build.

snooze.jpg

"Since the Windows 10 Anniversary Update in 2016, there is no way to prevent Windows 10 [Home] from automatically installing updates and rebooting your PC," fumed one vulture fan, John, who added that a group policy can be set on W10 Pro and Enterprise editions to prevent automated restarts."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

GDC 2017: zSpace Joins OpenXR Working Group

Subject: General Tech | March 3, 2017 - 07:01 AM |
Tagged: zspace, VR, Khronos

About a year before I joined PC Perspective, I acquired a degree in Education, which involved teaching at a local high school. Even though that was just five years after graduating high school, the amount of available technology has exploded in that time. SmartBoards were relevant enough to be taught at my teacher’s college just in case you got one. Contrast this to when I was a high school student, where “overhead projector” was assumed to mean “transparent paper and erasable marker”.

Why do I mention this? Well, basically everyone in the tech industry has been investigating the potential of VR and AR for the last couple of years, and education is a very obvious and practical application of it.

In this case, zSpace reached out and informed that they just joined the Khronos Group’s OpenXR Working Group. They hope to guide the specification from the educational technology perspective. From what I can see on their website, their products are basically like Wacom Cintiqs, except that the pen can function the volume of air in front of the screen, and glasses with markers adjust the output image to make it look like objects are floating between you and the display.

If you’re in the education sector, then be sure to check out what zSpace is doing, if only to be aware of the teaching tools that are available in the world. Every teacher I knew enjoyed browsing Staples, looking through the various bits of stationary for ideas, like recipe cards for cheap, impromptu student polls and challenges.

As for the rest of us? The more mainstream VR and AR is, the more innovation will occur, especially when they contribute back to open standards; win win.

Source: zSpace

Ryzen shine! It is time for your AMD roundup

Subject: Processors | March 2, 2017 - 03:08 PM |
Tagged: Ryzen 1700X, Zen, x370, video, ryzen, amd

Having started your journey with Ryan's quick overview of the performance of the 1800X and anxiously awaiting our further coverage now that we have both the parts and the time to test them you might want to take a peek at some other coverage. [H]ard|OCP tested the processor which many may be looking at due to the more affordable pricing, the Ryzen 1700X.  Their test system is based on a Gigabyte A370-Gaming 5 with 16GB of Corsair Vengeance DDR4-3600 which ran at 2933MHz during testing; Kyle reached out to vendors who assured him an update will make 3GHz reachable will arrive soon.  Part of their testing focused on VR performance, so make sure to check out the full article.

1488169187kcPgB2ioTd_1_2.jpg

"Saying that we have waited for a long time for a "real" CPU out of AMD would be a gross misunderstatement, but today AMD looks to remedy that. We are now offered up a new CPU that carries the branding name of Ryzen. Has AMD risen from the CPU graveyard? You be the judge after looking at the data."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

Wondering about upgrading your cooler mounts for Ryzen?

Subject: General Tech, Motherboards, Cases and Cooling | March 2, 2017 - 02:05 PM |
Tagged: AM4, ryzen, nzxt, fractal design, scythe

We have some good news from several companies about compatibility with that AM4 board you are hoping to set up.  NXZT have announced a program in which you can request a free AM4 mounting kit for your Kraken X62, X52, X42, X61, X41 or Kraken X31.  Just follow this link to apply for one, they will ship world wide starting on the 15th of March.  You will need to provide proof of purchase of both your AM4 motherboard and Kraken cooler.

nzxt.png

Fractal Design have a similar offer for owners of of their Kelvin series of coolers.  You can email their Support team for a bracket for your Kelvin T12, S24 or S36, make sure to attach proof of purchase of either a Ryzen processor or AM4 board.

fractals.jpg

Scythe is doing things a litle differently.  If you reside in Europe, they are offering free mounting kits to owners of their Mugen 5 cooler, simply reach out them via this link, again attaching a receipt for the cooler and either a Ryzen CPU or AM4 motherboard.  Owners of a Katana 3 or 4, Kabuto 3, Shuriken Rev. B, Tatsumi “A”, Byakko, or Iori cooler need not even go through that process, your coolers mount is already compatible.  For owners of other coolers you can reach out to Scythe via the previous link to order a bracket for  3,99€, to ship out sometime in May or later.  We will let you know when we hear from the NA branch.

scythe.jpg

"Coinciding with the new AMD Zen-based Ryzen CPUs, and the new AM4 socket, NZXT will be providing a free retention bracket for all current Kraken users. NZXT believes in providing high-quality components to our customers, in addition to exceptional customer service no matter where they reside and we will continue that support alongside the launch of Ryzen."

Here is some more Tech News from around the web:

Tech Talk

 

Source: NZXT

Podcast #439 - GTX 1080 Ti, Radeon RX Vega, and Ryzen

Subject: Editorial | March 2, 2017 - 11:37 AM |
Tagged: Vega, ryzen, podcast, fcat, 1080Ti, 1080

PC Perspective Podcast #439 - 03/02/17

Join us for GTX 1080 Ti, Radeon RX Vega, Ryzen and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Allyn Malventano, Josh Walrath, Jermey Hellstrom

Program length: 1:41:49

Podcast topics of discussion:
  1. Week in Review:
  2. Casper Ad
  3. News items of interest:
    1. 0:36:35 Ryzen News
  4. Closing/outro

Source:

AMD responds to 1080p gaming tests on Ryzen

Subject: Processors | March 2, 2017 - 11:29 AM |
Tagged: amd, ryzen, gaming, 1080p

By far one of the most interesting and concerning points about today's launch of the AMD Ryzen processor is gaming results. Many other reviewers have seen similar results to what I published in my article this morning: gaming at 1080p, even at "ultra" image quality settings, in many top games shows a deficit in performance compared to Intel Kaby Lake and Broadwell-E processors. 

I shared my testing result with AMD over a week ago, trying to get answers and hoping to find some instant fix (a BIOS setting, a bug in my firmware). As it turns out, that wasn't the case. To be clear, our testing was done on the ASUS Crosshair VI Hero motherboard with the 5704 BIOS and any reports you see claiming that the deficits only existed on ASUS products are incorrect.

hitman.png

AMD responded to the issues late last night with the following statement from John Taylor, CVP of Marketing:

“As we presented at Ryzen Tech Day, we are supporting 300+ developer kits with game development studios to optimize current and future game releases for the all-new Ryzen CPU. We are on track for 1000+ developer systems in 2017. For example, Bethesda at GDC yesterday announced its strategic relationship with AMD to optimize for Ryzen CPUs, primarily through Vulkan low-level API optimizations, for a new generation of games, DLC and VR experiences.

Oxide Games also provided a public statement today on the significant performance uplift observed when optimizing for the 8-core, 16-thread Ryzen 7 CPU design – optimizations not yet reflected in Ashes of the Singularity benchmarking. Creative Assembly, developers of the Total War series, made a similar statement today related to upcoming Ryzen optimizations.

CPU benchmarking deficits to the competition in certain games at 1080p resolution can be attributed to the development and optimization of the game uniquely to Intel platforms – until now. Even without optimizations in place, Ryzen delivers high, smooth frame rates on all “CPU-bound” games, as well as overall smooth frame rates and great experiences in GPU-bound gaming and VR. With developers taking advantage of Ryzen architecture and the extra cores and threads, we expect benchmarks to only get better, and enable Ryzen excel at next generation gaming experiences as well.

Game performance will be optimized for Ryzen and continue to improve from at-launch frame rate scores.” John Taylor, AMD

The statement begins with Taylor reiterating the momentum of AMD to support developers both from a GPU and a CPU technology angle. Getting hardware in the hands of programmers is the first and most important step to find and fixing any problem areas that Ryzen might have, so this is a great move to see taking place. Both Oxide Games and Creative Assembly, developers of Ashes of the Singularity and Total War respectively, have publicly stated their intent to demonstrate improved threading and performance on Ryzen platforms very soon.

Taylor then recognizes the performance concerns at 1080p with attribution to those deficits going to years of optimizations for Intel processors. It's difficult, if not impossible, to know for sure how much weight this argument has, but it would make some logical sense. Intel CPUs have been the automatic, defacto standard for gaming PCs for many years, and any kind of performance optimizations and development would have been made on those same Intel processors. So it seems plausible that simply by seeding Ryzen to developers and having them look at performance as development goes forward would result in a positive change for AMD's situation.

lisa-29.jpg

For buyers today that are gaming at 1080p, the situation is likely to remain as we have presented it going forward. Until games get patched or new games are released from developers that have had access and hands-on time with Ryzen, performance is unlikely to change from some single setting/feature that AMD or its motherboard partners can enable. 

The question I would love answered is why is this even happening? What architectural difference between Core and Zen is attributing to this delta? Is it fundamental to the pipeline built or to the caching structure or to how SMT is enabled? Does Windows 10 and its handling of kernel processes have something to do with it? There is a lot to try to figure out as testing moves forward.

If you want to see the statements from both Oxide and Creative Assembly, they are provided below.

“Oxide games is incredibly excited with what we are seeing from the Ryzen CPU. Using our Nitrous game engine, we are working to scale our existing and future game title performance to take full advantage of Ryzen and its 8-core, 16-thread architecture, and the results thus far are impressive. These optimizations are not yet available for Ryzen benchmarking. However, expect updates soon to enhance the performance of games like Ashes of the Singularity on Ryzen CPUs, as well as our future game releases.” - Brad Wardell, CEO Stardock and Oxide
 
"Creative Assembly is committed to reviewing and optimizing its games on the all-new Ryzen CPU. While current third-party testing doesn’t reflect this yet, our joint optimization program with AMD means that we are looking at options to deliver performance optimization updates in the future to provide better performance on Ryzen CPUs moving forward. " – Creative Assembly, Developers of the Multi-award Winning Total War Series

Source: AMD
Author:
Subject: Processors
Manufacturer: AMD

AMD Ryzen 7 Processor Specifications

It’s finally here and its finally time to talk about. The AMD Ryzen processor is being released onto the world and based on the buildup of excitement over the last week or so since pre-orders began, details on just how Ryzen performs relative to Intel’s mainstream and enthusiast processors are a hot commodity. While leaks have been surfacing for months and details seem to be streaming out from those not bound to the same restrictions we have been, I think you are going to find our analysis of the Ryzen 7 1800X processor to be quite interesting and maybe a little different as well.

Honestly, there isn’t much that has been left to the imagination about Ryzen, its chipsets, pricing, etc. with the slow trickle of information that AMD has been sending out since before CES in January. We know about the specifications, we know about the architecture, we know about the positioning; and while I will definitely recap most of that information here, the real focus is going to be on raw numbers. Benchmarks are what we are targeting with today’s story.

Let’s dive right in.

The Zen Architecture – Foundation for Ryzen

Actually, as it turns out, in typical Josh Walrath fashion, he wrote too much about the AMD Zen architecture to fit into this page. So, instead, you'll find his complete analysis of AMD's new baby right here: AMD Zen Architecture Overview: Focus on Ryzen

ccx.png

AMD Ryzen 7 Processor Specifications

Though we have already detailed the most important specifications for the new AMD Ryzen processors when the preorders went live, its worth touching on them again and reemphasizing the important ones.

  Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Core i7-6900K Core i7-6800K Core i7-7700K Core i5-7600K Core i7-6700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake Kaby Lake Skylake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+ 14nm+ 14nm
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8 4/4 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz 3.8 GHz 4.0 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz 4.2 GHz 4.2 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB 8MB 8MB
Memory Support DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Quad Channel
DDR4-2400
Quad Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts 91 watts 91 watts
Price $499 $399 $329 $1050 $450 $350 $239 $309

All three of the currently announced Ryzen processors are 8-core, 16-thread designs, matching the Core i7-6900K from Intel in that regard. Though Intel does have a 10-core part branded for consumers, it comes in at a significantly higher price point (over $1500 still). The clock speeds of Ryzen are competitive with the Broadwell-E platform options though are clearly behind the curve when it comes the clock capabilities of Kaby Lake and Skylake. With admittedly lower IPC than Kaby Lake, Zen will struggle in any purely single threaded workload with as much as 500 MHz deficit in clock rate.

One interesting deviation from Intel's designs that Ryzen gets is a more granular boost capability. AMD Ryzen CPUs will be able move between processor states in 25 MHz increments while Intel is currently limited to 100 MHz. If implemented correctly and effectively through SenseMI, this allows Ryzen to get 25-75 MHz of additional performance in a scenario where it was too thermally constrainted to hit the next 100 MHz step. 

DSC02636.jpg

XFR (Extended Frequency Range), supported on the Ryzen 7 1800X and 1700X (hence the "X"), "lifts the maximum Precision Boost frequency beyond ordinary limits in the presence of premium systems and processor cooling." The story goes, that if you have better than average cooling, the 1800X will be able to scale up to 4.1 GHz in some instances for some undetermined amount of time. The better the cooling, the longer it can operate in XFR. While this was originally pitched to us as a game-changing feature that bring extreme advantages to water cooling enthusiasts, it seems it was scaled back for the initial release. Only getting 100 MHz performance increase, in the best case result, seems a bit more like technology for technology's sake rather than offering new capabilities for consumers.

cpu2.jpg

Ryzen integrates a dual channel DDR4 memory controller with speeds up to 2400 MHz, matching what Intel can do on Kaby Lake. Broadwell-E has the advantage with a quad-channel controller but how useful that ends of being will be interesting to see as we step through our performance testing.

One area of interest is the TDP ratings. AMD and Intel have very different views on how this is calculated. Intel has made this the maximum power draw of the processor while AMD sees it as a target for thermal dissipation over time. This means that under stock settings the Core i7-7700K will not draw more than 91 watts and the Core i7-6900K will not draw more than 140 watts. And in our testing, they are well under those ratings most of the time, whenever AVX code is not being operated. AMD’s 95-watt rating on the Ryzen 1800X though will very often be exceed, and our power testing proves that out. The logic is that a cooler with a 95-watt rating and the behavior of thermal propagation give the cooling system time to catch up. (Interestingly, this is the philosophy Intel has taken with its Kaby Lake mobile processors.)

lisa-29.jpg

Obviously the most important line here for many of you is the price. The Core i7-6900K is the lowest priced 8C/16T option from Intel for consumers at $1050. The Ryzen R7 1800X has a sticker price less than half of that, at $499. The R7 1700X vs Core i7-6800K match is interesting as well, where the AMD CPU will sell for $399 versus $450 for the 6800K. However, the 6800K only has 6-cores and 12-threads, giving the Ryzen part an instead 25% boost in multi-threaded performance. The 7700K and R7 1700 battle will be interesting as well, with a 4-core difference in capability and a $30 price advantage to AMD.

Continue reading our review of the new AMD Ryzen 7 1800X processor!!

Author:
Subject: Processors
Manufacturer: AMD

What Makes Ryzen Tick

We have been exposed to details about the Zen architecture for the past several Hot Chips conventions as well as other points of information directly from AMD.  Zen was a clean sheet design that borrowed some of the best features from the Bulldozer and Jaguar architectures, as well as integrating many new ideas that had not been executed in AMD processors before.  The fusion of ideas from higher performance cores, lower power cores, and experience gained in APU/GPU design have all come together in a very impressive package that is the Ryzen CPU.

zen_01.jpg

It is well known that AMD brought back Jim Keller to head the CPU group after the slow downward spiral that AMD entered in CPU design.  While the Athlon 64 was a tremendous part for the time, the subsequent CPUs being offered by the company did not retain that leadership position.  The original Phenom had problems right off the bat and could not compete well with Intel’s latest dual and quad cores.  The Phenom II shored up their position a bit, but in the end could not keep pace with the products that Intel continued to introduce with their newly minted “tic-toc” cycle.  Bulldozer had issues  out of the gate and did not have performance numbers that were significantly greater than the previous generation “Thuban” 6 core Phenom II product, much less the latest Intel Sandy Bridge and Ivy Bridge products that it would compete with.

AMD attempted to stop the bleeding by iterating and evolving the Bulldozer architecture with Piledriver, Steamroller, and Excavator.  The final products based on this design arc seemed to do fine for the markets they were aimed at, but certainly did not regain any marketshare with AMD’s shrinking desktop numbers.  No matter what AMD did, the base architecture just could not overcome some of the basic properties that impeded strong IPC performance.

52_perc_design_opt.png

The primary goal of this new architecture is to increase IPC to a level consistent to what Intel has to offer.  AMD aimed to increase IPC per clock by at least 40% over the previous Excavator core.  This is a pretty aggressive goal considering where AMD was with the Bulldozer architecture that was focused on good multi-threaded performance and high clock speeds.  AMD claims that it has in fact increased IPC by an impressive 54% from the previous Excavator based core.  Not only has AMD seemingly hit its performance goals, but it exceeded them.  AMD also plans on using the Zen architecture to power products from mobile products to the highest TDP parts offered.

 

The Zen Core

The basis for Ryzen are the CCX modules.  These modules contain four Zen cores along with 8 MB of shared L3 cache.  Each core has 64 KB of L1 I-cache and 32 KB of D-cache.  There is a total of 512 KB of L2 cache.  These caches are inclusive.  The L3 cache acts as a victim cache which partially copies what is in L1 and L2 caches.  AMD has improved the performance of their caches to a very large degree as compared to previous architectures.  The arrangement here allows the individual cores to quickly snoop any changes in the caches of the others for shared workloads.  So if a cache line is changed on one core, other cores requiring that data can quickly snoop into the shared L3 and read it.  Doing this allows the CPU doing the actual work to not be interrupted by cache read requests from other cores.

ccx.png

l2_cache.png

l3_cache.png

Each core can handle two threads, but unlike Bulldozer has a single integer core.  Bulldozer modules featured two integer units and a shared FPU/SIMD.  Zen gets rid of CMT for good and we have a single integer and FPU units for each core.  The core can address two threads by utilizing AMD’s version of SMT (symmetric multi-threading).  There is a primary thread that gets higher priority while the second thread has to wait until resources are freed up.  This works far better in the real world than in how I explained it as resources are constantly being shuffled about and the primary thread will not monopolize all resources within the core.

Click here to read more about AMD's Zen architecture in Ryzen!

GDC 2017: $200 Off Oculus Rift and Touch

Subject: General Tech | March 2, 2017 - 02:59 AM |
Tagged: Oculus, VR, pc gaming

Alongside the release of Robo Recall from Epic Games, which is free of you own an Oculus Rift and the Oculus Touch controllers, Oculus has changed up how you can purchase the Oculus Rift. As was the case since the Touch controllers shipped, the Oculus Rift is bundled with these motion controllers. The difference is that, now, the bundle will cost $598 USD. This is a $200 reduction in price compared to someone who purchased the headset and the controllers separately last week. The controllers, alone, are now $99 USD.

So this is interesting.

According to recent statements by Gabe Newell, who is obviously in the HTC Vive camp, the VR market doesn’t have “a compelling reason for people to spend 20 hours a day in VR”. This assertion was intended to dispel the opinion that a price cut would help VR along. From his perspective, VR will have a huge bump in resolution and frame rate within one or two years, and current headsets are basically the minimum of adequacy.

So, from both a software and technology standpoint, VR can benefit from more time in the oven before tossing it down the garbage disposal. I see that point and I agree with it, but only to a point. A price reduction can still help in several ways. First, the games industry has made some drastic shifts toward the individual. Free tools, from IDEs to AAA-quality game engines, seem to be picking up in adoption. A high entry fee for a segment of that mind share will push those with creative ideas elsewhere.

But, probably more importantly, even if the market is small, pulling in more users makes it grow. The more lead users that you can acquire, the more risk can be attempted, which will make an even better situation for whenever we need to start considering mass market. Imagine if a factor of two increase in user base would be enough for Microsoft (or Linux distros) to consider virtual desktops for VR. If we reach that threshold a year or two sooner, then it will have a more significant impact on the value for mainstream users whenever the technology catches up to their interest.

And yes, this is coming from the guy who is currently surrounded by four monitors...

Anyway, rant aside, Oculus has jumped in to a significant price reduction. This should get it into the hands of more people, assuming the injunction order doesn’t get accepted and drop on them like a hammer.

Source: Oculus

YouTube Launching Its Own $35 Per Month Live TV Streaming Service With Cloud DVR

Subject: General Tech | March 2, 2017 - 12:16 AM |
Tagged: youtube red, youtube, live tv, cord cutting, cloud dvr, broadcast tv

YouTube is jumping into the streaming TV market with the launch of YouTube TV. The new "over the top" streaming service is aimed at cord cutters and users that want to watch live and recorded TV on their mobile devices. YouTube TV joins AT&T's DirecTV Now, Dish Network's Sling TV, and PlayStation Vue with a streaming package of ~40 channels for $35 per month that is reportedly the result of licensing negotiations and deals two years in the making.

The streaming platform, which is reportedly coming in the next weeks to months (depending on the market and local market licensing), will come out swinging with two main advantages over the existing competition: YouTube TV will allow more simultaneous streams (six accounts with up to 3 streams going at the same time) and have DVR functionality with unlimited storage and unlimited simultaneous recordings where episodes will be saved for 9 months.

YouTube TV.jpg

Unfortunately, YouTube TV suffers the same main drawback of these over the top TV streaming services which is channel selection. Due to licensing issues, YouTube TV will have a collection of 40 channels at launch including access to ABC, NBC, FOX, CBS, CBS Sports Network, ESPN, E!, CW, FX, USA, Freeform, FS1, Disney Channel, and more. However, it lacks the cable-only networks like AMC and Viacom (also no MTV, CNN, TNT, TBS, Comedy Central, HGTV, or Food Network). Showtime is available for an extra monthly fee though.

The sports channels are nice to see and are sure to be appreciated, but due to Verizon's exclusivity deal NFL games are restricted to PCs and can not be streamed on mobile devices using YouTube TV.

For those interested, CNET has a full list of the channels here. YouTube TV will reportedly also allow access to YouTube Red programming, but the TV programming will still have ads (of course).

Excepting the NFL streams, users can watch live and recorded TV on their PCs, smartphones, tablets, and Chromecasts. Google Home support is currently in development as well and will eventually allow you to tune into a channel on your Chromecast using your voice.

I am a excited to see another major player enter this IP TV streaming space, and with a working DVR it will have a leg up over the competition (here's looking at you, DirecTV Now). With Google backing the venture I am hopeful that it can flex its considerable capital muscle to work out further deals with the stubborn cable networks and eventually (maybe) we will see a truly a la carte TV streaming service!

What are your thoughts on YouTube TV? Is it enough to get you to cut the cord, or are you too into The Walking Dead?

Source: YouTube

Delidded Ryzen 7 1700 Confirms AMD Is Using Solder With IHS On Ryzen Processors

Subject: Processors | March 1, 2017 - 09:17 PM |
Tagged: solder, Ryzen 1700, ryzen, overclocking, IHS, delid, amd

Professional extreme overclocker Roman "der8auer" Hartung from Germany recently managed to successfully de-lid his AMD Ryzen 7 1700 processor and confirmed that AMD is, in fact, using solder as its thermal interface material of choice between the Ryzen die and IHS (integrated heat spreader). The confirmation that AMD is using solder is promising news for enthusiasts eager to overclock the new processors and see just how far they are able to push them on air and water cooling.

Delidded Ryzen 7 1700 Die.JPG

Image credit: Roman Hartung. Additional high resolution photos are available here.

In a video on his YouTube channel, der8auer ("The Farmer") shows the steps involved in delidding the Ryzen 7 1700 which involve using razor blades, a heating element to get the IHS heated to a temperature high enough to melt the indium (~170°C on the block with the indium melting around 157°C), and a whole lot of courage. After using the razor blades to cut the glue around the edges, he heated up the IHS enough to start melting the solder and after a cringe-worthy cracking sound he was able to lift the package away from the IHS with the die and on-package components intact!

He does note that the Ryzen using PGA rather than the LGA method Intel has moved to makes the CPU a bit harder to handle as the pins are on the CPU rather than the socket and are easily bent. Compared to the delidding process and possibility of cracking the die or ripping off some components and killing the $329 CPU though, bent pins are nothing and can usually be bent back heh. He reportedly went through two previous Ryzen CPUs before getting a successful de-lid on the third attempt after all.

It seems that AMD is using two small pads of Indium solder along with some gold plating on the inside of the IHS to facilitate heat transfer and allow the solder to mate with the IHS. Because AMD is using what seems to be high quality solder TIM, delidding and replacing the TIM does not seem to be necessary at all; however, Roman "der8auer" Hartung speculates that direct die cooling could work out very well for those enthusiasts brave enough to try it since the cooler does not need to put high amounts of pressure onto the CPU to hold it into place unlike an LGA socket. 

If you are interested in seeing the overclocking benefits of de-lidding and direct die cooling a Ryzen CPU, keep an eye on his YouTube channel for a video over the weekend detailing his testing using a Ryzen 7 1800X.

I am really looking forward to seeing how far enthusiasts are able to push Ryzen (especially on water), and maybe we can convince Morry to de-lid a Ryzen CPU!

Happy Overclocking!

Also read:

Source: der8auer