SanDisk Launches 512GB SDXC Card for $799.99

Subject: General Tech, Storage | September 12, 2014 - 04:08 PM |
Tagged: sandisk, sdxc, sdhc, sd card, 512GB

Assuming your camera, card reader, or other device fully conforms to the SDXC standard, Sandisk has developed a half-terabyte (512GB) memory card. Beyond being gigantic, it can be read at up to 95 MB/s and written at up to 90 MB/s, which should be enough to stream 4K video. Sandisk claims that it is temperature proof, shock proof, water proof, and x-ray proof. It also comes with a lifetime warranty and "RescuePRO Deluxe" recovery software but, honestly, I expect people would just use PhotoRec or something.

It should be noted that the SDXC standard covers memory cards up to 2TB so it will probably not be too long before we see another standard get ratified. What is next? SDUC? SDYC? SDALLTHEC? Blah! This is why IEEE assigns names sequentially.

The SanDisk Extreme PRO UHS-I SDHC/SDXC 512GB memory card should be available now, although I cannot yet find them online, for $799.99 MSRP.

Source: SanDisk

IDF 2014: Through Silicon Via - Connecting memory dies without wires

Subject: Storage, Shows and Expos | September 10, 2014 - 03:34 PM |
Tagged: TSV, Through Silicon Via, memory, idf 2014, idf

If you're a general computer user, you might have never heard the term "Through Silicon Via". If you geek out on photos of chip dies and wafers, and how chips are assembled and packaged, you might have heard about it. Regardless of your current knowledge of TSV, it's about to be a thing that impacts all of you in the near future.

Let's go into a bit of background first. We're going to talk about how chips are packaged. Micron has an excellent video on the process here:

The part we are going to focus on appears at 1:31 in the above video:

die wiring.png

This is how chip dies are currently connected to the outside world. The dies are stacked (four high in the above pic) and a machine has to individually wire them to a substrate, which in turn communicates with the rest of the system. As you might imagine, things get more complex with this process as you stack more and more dies on top of each other:

chip stacking.png

16 layer die stack, pic courtesy NovaChips

...so we have these microchips with extremely small features, but to connect them we are limited to a relatively bulky process (called package-on-package). Stacking these flat planes of storage is a tricky thing to do, and one would naturally want to limit how many of those wires you need to connect. The catch is that those wires also equate to available throughput from the device (i.e. one wire per bit of a data bus). So, just how can we improve this method and increase data bus widths, throughput, etc?

Before I answer that, let me lead up to it by showing how flash memory has just taken a leap in performance. Samsung has recently made the jump to VNAND:

vnand crop--.png

By stacking flash memory cells vertically within a die, Samsung was able to make many advances in flash memory, simply because they had more room within each die. Because of the complexity of the process, they also had to revert back to an older (larger) feature size. That compromise meant that the capacity of each die is similar to current 2D NAND tech, but the bonus is speed, longevity, and power reduction advantages by using this new process.

I showed you the VNAND example because it bears a striking resemblance to what is now happening in the area of die stacking and packaging. Imagine if you could stack dies by punching holes straight through them and making the connections directly through the bottom of each die. As it turns out, that's actually a thing:

tsv cross section.png

Read on for more info about TSV!

IDF 2014: Western Digital announces new Ae HDD series for archival / cold storage

Subject: Storage, Shows and Expos | September 9, 2014 - 04:51 PM |
Tagged: WDC< Western Digital, WD, idf 2014, idf, hdd, Cold, Archival, Ae

We talked about helium filled, shingled HDD's from HGST earlier today. Helium may give you reduced power demands, but at the added expensive of hermetically sealed enclosures over conventional HDD's. Shingling may give added capacity, but at the expense of being forced into specific writing methods. Now we know Western Digital's angle into archival / cold storage:

WD_AE_PRN.jpg

..so instead of going with higher cost newer technologies, WD is taking their consumer products and making them more robust. They are also getting rid of the conventional thinking of capacity increments and are moving to 100GB increments. The idea is that once a large company or distributor has qualified a specific HDD model on their hardware, that model will stick around for a while, but be continued at an increased capacity as platter density yields increase over time. WD has also told me that capacities may even be mixed an matched within a 20-box of drives, so long as the average capacity matches the box label. This works in the field of archival / cold storage for a few reasons:

  • Archival storage systems generally do not use conventional RAID (where an entire array of matching capacity disks are spinning simultaneously). Drives are spun up and written to individually, or spun up individually to service the occasional read request. This saves power overall, and it also means the individual drives can vary in capacity with no ill effects.
  • Allowing for variable capacity binning helps WD ship more usable platters/drives overall (i.e. not rejecting drives that can't meet 6TB). This should drive overall costs down.
  • Increasing capacity by only a few hundred GB per drive turns into *huge* differences in cost when you scale that difference up to the number of drives you would need to handle a very large total capacity (i.e. Exabytes).

So the idea here is that WD is choosing to stick with what they do best, which they can potentially do for even cheaper than their consumer products. That said, this is really meant for enterprise use and not as a way for a home power user to save a few bucks on a half-dozen drives for their home NAS. You really need an infrastructure in place that can handle variable capacity drives seamlessly. While these drives do not employ SMR to get greater capacity, that may work out as a bonus, as writes can be performed in a way that all systems are currently compatible with (even though I suspect they will be tuned more for sequential write workloads).

Here's an illustration of this difference:

capacity 1.png

The 'old' method meant that drives on the left half of the above bell curve would have to be sold as 5TB units.

capacity 2.png

With the 'new' method, drives can be sold based on a spec closer to their actual capacity yield. For a given model, shipping capacities would increase as time goes on (top to bottom of the above graphic).

To further clarify what is meant by the term 'cold storage' - the data itself is cold, as in rarely if ever accessed:

tiers.png

Examples of this would be Facebook posts / images from months or years ago. That data may be rarely touched, but it needs to be accessible enough to be browsed to via the internet. The few second archival HDD spinup can handle this sort of thing, while a tape system would take far too long and would likely timeout that data request.

WD's Ae press blast after the break.

IDF 2014: HGST announces 3.2TB NVMe SSDs, shingled 10TB HDDs

Subject: Storage, Shows and Expos | September 9, 2014 - 02:00 PM |
Tagged: ssd, SMR, pcie, NVMe, idf 2014, idf, hgst, hdd, 10TB

It's the first day of IDF, so it's only natural that we see a bunch of non-IDF news start pouring out :). I'll kick them off with a few announcements from HGST. First item up is their new SN100 line of PCIe SSDs:

Ultrastar_SN100_Family_CMYK_Master.jpg

These are NVMe capable PCIe SSDs, available from 800GB to 3.2TB capacities and in (PCI-based - not SATA) 2.5" as well as half-height PCIe cards.

Next up is an expansion of their HelioSeal (Helium filled) drive line:

10TB_Market_applications_HR.jpg

Through the use of Shingled Magnetic Recording (SMR), HGST can make an even bigger improvement in storage densities. This does not come completely free, as due to the way SMR writes to the disk, it is primarily meant to be a sequential write / random access read storage device. Picture roofing shingles, but for hard drives. The tracks are slightly overlapped as they are written to disk. This increases density greatly, but writting to the middle of a shingled section is not possible without potentially overwriting two shingled tracks simultaneously. Think of it as CD-RW writing, but for hard disks. This tech is primarily geared towards 'cold storage', or data that is not actively being written. Think archival data. The ability to still read that data randomly and on demand makes these drives more appealing than retrieving that same data from tape-based archival methods.

Further details on the above releases is scarce at present, but we will keep you posted on further details as they develop.

Full press blast for the SN100 after the break.

Source: HGST

The summer SSD saturation; who reigns supreme?

Subject: Storage | September 5, 2014 - 03:06 PM |
Tagged: roundup, ssd

The SSD Review has put a quick overview of what they feel are the best SSDs released this summer in several classes, though picking the Intel P3700 PCIe SSD which is not slated for release until the end of September might be considered cheating a bit.  It is no surprise that the Samsung 850 Pro is the Enthusiast recommendation or the Crucial MX100 being recommended for those with a tight budget.  They also list M.2, mSATA and even USB recommendations so head on over to see the full round up.

629x378xSamsung-EVO-840-1TB-SSD-Serial-Number.jpg.pagespeed.ic_.ToKlrW9A1d.jpg

"Summer has come and gone, and over the past few months, there have been quite a few SSDs released into the market, and the question of, "Which SSD should I buy?" seems to still come up a lot around forums. Usually, there are some predetermined recommended favorite in each."

Here are some more Storage reviews from around the web:

Storage

Intel Sent Us a Containment Chamber with Parts Inside

Subject: Motherboards, Processors, Chipsets, Memory, Storage | September 5, 2014 - 01:21 PM |
Tagged: X99-Deluxe, SSD 730, Intel, Haswell-E, ddr4, asus, 5960X

Okay, I'll be the first to admit that I didn't know what I was getting into. When a couple of packages showed up at our office from Intel with claims that they wanted to showcase the new Haswell-E platform...I was confused. The setup was simple: turn on cameras and watch what happens.

So out of the box comes...a containment chamber. A carefully crafted, wood+paint concoction that includes lights, beeps, motors and platforms. 

Want to see how Intel promotes the Core i7-5960X and X99 platform? Check out this video below.

Our reviews of products included in this video:

Subject: Storage
Manufacturer: Corsair

Introduction, Specifications and Packaging

Introduction:

We first looked at the Silicon Motion 2246EN controller in our Angelbird SSD wrk review. In that review, we noted the highest sequential performance seen in any SATA SSD reviewed to date. Eager to expand our testing to include additional vendors and capacities, our next review touching on this controller is the Corsair Force LX series of SSDs. The Force LX Series is available in 128GB, 256GB, and 512GB capacities, and today we will look at the 256GB and 512GB iterations of this line:

DSC05011.JPG

Continue reading as we evaluate the Corsair Force LX series:

Subject: Storage
Manufacturer: Western Digital

Introduction, Specifications and Packaging

Introduction:

Today I'm going to talk to you about something you might not have thought you needed, but once you realize what this new device can do, you might just want one. Imagine a Western Digital My Cloud, but only smaller, battery powered, and wireless. You could fill it with a bunch of movies, music, and other media for something like an upcoming family road trip. If said device could create its own wireless hotspot, the kids could connect to it via their tablets or other portable devices and watch their movie of choice during the drive. Once you are at your destination and snapping a bunch of photos, it would also be handy if this imaginary device could also mount SD cards for sharing recently taken photos with others on your trip. A bonus might be the ability to store a back-up of those SD cards as they become full, or maybe even empty them for folks without a lot of SD capacity available. As a final bonus, make all of this work in such a way that you could pull off an entire trip with *only* mobile devices and tablets - *without* a PC or a Mac. Think all of that can happen? It can now!:

DSC05036.JPG

Behold the WD My Passport Wireless!

Read on for our full review!

Kingston's new HyperX Fury SSD; fool me once ...

Subject: Storage | August 27, 2014 - 04:09 PM |
Tagged: Sandforce SF2281, kingston, hyper x fury, 240gb

The Kingston Hyper X Fury 240GB is a slim SSD able to fit in the anemic ultrabooks though it does ship with a 2.5mm adapter for systems which are a little more meaty.  It uses the familiar Sandforce SF2281 controller and has changed to 128GBit ONFi 3 NAND from the previous ONFi 1 and 2 found in the V300 and the first Fury models.  This NAND is slower at reads but at the same time it is also significantly more rugged, with a endurance rating of 641TB worth of writes.  Hopefully Kingston learned from the reaction to its previous release of the V300 where review models were sent out with Toggle Mode NAND which was then switched for ONFi in the retail models.  Hardware Canucks saw decent performance at a price in line with the market, but it is up to you to decide if you are willing to forgive Kingston and purchase this new SSD.

board1_sm.jpg

"Kingston has long been known as a company that caters to budget-minded buyers and that's exactly what their new HyperX Fury SSD does. However, this time performance is also a priority."

Here are some more Storage reviews from around the web:

Storage

Seagate Ships World’s First 8TB Hard Drives

Subject: Storage | August 26, 2014 - 01:18 PM |
Tagged: Seagate, hdd, 8TB, Cleversafe

Sometime in the next quarter you will be able to pick up a 3.5" Seagate HDD with 8TB of storage on it.  These are aimed at data centres so they will have reduced power usage and are likely to have an impressive warranty attached, though that along with the high storage density will cost you a bit to purchase.  They do not offer much in the way of specifics, no platter count or cache size are listed in the PR but you can expect to find out more about them in the very near future. 

images.jpg

CUPERTINO, Calif.--(BUSINESS WIRE)-- Seagate Technology plc (NASDAQ:STX), a world leader in storage solutions, today announced it is shipping the world’s first 8TB hard disk drive. An important step forward in storage, the 8TB hard disk drive provides scale-out data infrastructures with supersized-capacity, energy-efficiency and the lowest total cost of ownership (TCO) in the industry for cloud content, object storage and back-up disaster recovery storage.

“As our world becomes more mobile, the number of devices we use to create and consume data is driving an explosive growth in unstructured data. This places increased pressure on cloud builders to look for innovative ways to build cost-effective, high capacity storage for both private and cloud-based data centers,” said Scott Horn, Seagate vice president of marketing. “Seagate is poised to address this challenge by offering the world’s first 8TB HDD, a ground-breaking new solution for meeting the increased capacities needed to support the demand for high capacity storage in a world bursting with digital creation, consumption and long-term storage.”

A cornerstone for growing capacities in multiple applications, the 8TB hard drive delivers bulk data storage solutions for online content storage providing customers with the highest capacity density needed to address an ever increasing amount of unstructured data in an industry-standard 3.5-inch HDD. Providing up to 8TB in a single drive slot, the drive delivers maximum rack density, within an existing footprint, for the most efficient data center floor space usage possible.

“Public and private data centers are grappling with efficiently storing massive amounts of unstructured digital content,” said John Rydning, IDC’s research vice president for hard disk drives. “Seagate’s new 8TB HDD provides IT managers with a new option for improving storage density in the data center, thus helping them to tackle one of the largest and fastest growing data categories within enterprise storage economically.”

The 8TB hard disk drive increases system capacity using fewer components for increased system and staffing efficiencies while lowering power costs. With its low operating power consumption, the drive reliably conserves energy thereby reducing overall operating costs. Helping customers economically store data, it boasts the best Watts/GB for enterprise bulk data storage in the industry.

“Cleversafe is excited to once again partner with Seagate to deliver to our customers what is truly an innovative storage solution. Delivering absolute lowest cost/TB along with the performance and reliability required for massive scale applications, the new 8TB hard disk drive is ideal for meeting the needs of our enterprise and service provider customers who demand optimized hardware and the cost structure needed for massive scale out,” said Tom Shirley, senior vice president of research and development, Cleversafe.

Outfitted with enterprise-class reliability and support for archive workloads, it features multi-drive RV tolerance for consistent enterprise-class performance in high density environments. The drive also incorporates a proven SATA 6Gb/s interface for cost-effective, easy system integration in both private and public data centers.

Source: Seagate