Apacer Launches New PATA SSDs in 2.5" and 1.8" Form Factors

Subject: Storage | March 3, 2013 - 06:03 PM |
Tagged: ssd, pata, IDE, apacer

Apacer recently launched two new SSDs aimed at commercial and industrial applications. The drives will offer up either SLC or MLC NAND flash, but with a twist. The two drives feature the IDE / PATA interface instead of the newer SATA interface seen in today’s systems. Apacer is hoping its PATA SSDs will be used as an upgrade path when the hard drives currently used in industrial systems need replaced. The new Solid State Drives fall under the Apacer AFD 257 and AFD 187 series. The Apacer AFD-257 Premium is a 2.5" drive, and the AFD-187 Premium is a 1.8" drive.

 

Apacer 257.jpg

To accommodate the greater need to data protection in such systems, Apacer has built several security features into the drives. The new PATA SSDs include Full Erase, Destroy, and Write Protection features. Interestingly, those security features can be activated using software or via hardware connected to a small port on the drives via a cable that can be routed to a control panel on the external IO of a chassis.

The drives have up to 256 GB capacities and have standard features such as SMART, wear leveling, and ECC (72-bit). The IDE interface is rather antiquated, but Apacer at least supports the faster transfer modes including: DIO Mode-4, MWDMA Mode-2, and Ultra DMA-6. PATA SSDs were somewhat-rare when IDE was still the dominant consumer standard, so it is nice to see there are alternatives for replacement parts still available.

Apacer 187.jpg

Unfortunately, there is no word on pricing or availability. Transfer speeds are also unknown, but you can expect it to be bottle-necked by the IDE interface (though random access speeds should be a huge improvement over a hard drive, even with the slower PATA interface).

Source: Apacer

Plextor's extremely professional M5 SSD

Subject: Storage | March 1, 2013 - 04:43 PM |
Tagged: plextor, Marvell. Monet 9187, 19nm, toggle NAND, M5 Pro Extreme

Plextor used to be famous for their CD burners and the number of sheep that they were rated, but the days of blindwrite and moving carefully about the PC while burning a disk are long gone.  Instead they are focused on SSDs and other storage media, including the M5 Pro Extreme which [H]ard|OCP just reviewed.  It features a powerful Marvell controller not used by many competitors and 19nm Toggle flash from Toshiba.  While this drive will not compete against some when used by gamers, that is not what Plextor intended for this drive.  Instead focus on the steady write performance as this is a professional drive which thrives under heavy workloads.  Check out the review if you need some fast media for video or high end graphics work.

H_M5 Pro Extreme.jpg

"The Plextor M5 Pro Xtreme 256GB SSD is designed and optimized for users with demanding workloads. The Marvell Monet 9187 controller in tandem with the 19nm Toshiba Toggle Mode NAND provides outstanding specifications. We test the M5 Pro Xtreme with other flagship SSDs."

Here are some more Storage reviews from around the web:

Storage

Source: [H]ard|OCP

OCZ Technology to Showcase Next-Generation Enterprise Storage Solutions at CeBIT 2013

Subject: Storage, Shows and Expos | February 25, 2013 - 02:12 PM |
Tagged: ocz, ssd, PCIe SSD, CeBIT 2013, ZD-XL Accelerator

SAN JOSE, CA—February 25, 2013—OCZ Technology Group, Inc. (Nasdaq:OCZ), a leading provider of high-performance solid-state drives (SSDs) for computing devices and systems, today announced that it will preview a variety of enterprise storage solutions at next week’s CeBIT 2013 conference in Hannover, Germany. As a renowned global forum, CeBIT represents a great opportunity for attendees to be the first to see and experience the latest innovations in solid-state storage from an industry leader in enterprise SSDs, virtualization, and caching software. OCZ offers a complete suite of storage solutions that address VMware, Linux, and SQL Server platforms, and invites IT decision-makers who are evaluating or implementing solid-state storage in the data center to visit the Company’s exhibit in Hall 2, Stand E43, from March 5th through 9th.

ocz.jpg

OCZ will unveil the next-generation ZD-XL SQL Accelerator, a culmination of enterprise hardware and software converging as one tightly integrated and optimized solution. The ZD-XL Accelerator addresses SQL Server database applications to not only ensure that the data for this implementation is right, relevant, and readily available on SSD flash when the SQL Server needs it, but also that the data is accessed with the highest possible I/O performance. For simple deployment and ease of use, this tightly integrated, optimized solution features ‘implementation wizards’ to guide DBAs so they can optimally manage data cached to the flash. While showcasing the ZD-XL solution OCZ will invite enterprise customers to become beta testers for this exciting solution.

Also included in OCZ’s exhibition at CeBIT will be demonstrations to preview the upcoming VXL 1.3 Virtualization Software and LXL Acceleration Software with OCZ’s innovative Direct Pass Caching Technology, which not only addresses VMware but is also optimized for Linux applications. OCZ is one of the few SSD providers with a robust portfolio of virtualization and caching software that combine the power of flash acceleration with the power of storage virtualization. This enables multiple virtual server loads to run concurrently on a single physical host, not only increasing CPU and memory resource utilization, but also simplifying deployment, high availability (HA), and maintenance of the server loads.

velodrive-c-series.jpg

The next-generation of workstation PCI Express (PCIe)-based SSDs will also be available soon as part of the Company’s award-winning Vector Series. These drives reside directly on the PCIe bus and will support four PCIe Gen2 lanes providing lower latency to data, faster file transfers and system boot-ups, expanded storage capacities, and an even quicker, more responsive experience over the already blazingly fast SATA 3.0-based Vector Series. The Vector PCIe Series will feature an advanced suite of flash management tools that deliver enhanced drive endurance and data, making it ideally suited for power computing, content creation, and workstation applications.

Checking the non-Pro version of the Samsung 840

Subject: Storage | February 22, 2013 - 01:33 PM |
Tagged: Samsung 840, Samsung, ssd, 120gb, Samsung MDX

[H]ard|OCP just wrapped up a review of the 120GB Samsung 840, using their own ARM Cortex R4 based MDX controller and TLC memory for storage.  They compare the speed of this drive to the 256GB 840 Pro, Kingston's V300 120GB and the Intel 335 240GB to contrast the difference the type of NAND used can make to performance.  This is especially evident on the write and latency benchmarks, which fall well behind the competition.  From [H]'s testing it is apparent that TLC memory is very vulnerable to reduction in size, the reduced channels really hurt performance and put the 120GB model far behind the larger sized 840s which they have tested with much better results.

H840128gb.jpg

"The 120GB Samsung 840 Series SSD features the powerful 8-channel MDX controller and TLC NAND. While this value SSD comes at a very good price, it also features much lower speeds than its larger capacity brethren. We put this value SSD through our suite of steady state tests to see if it can pass muster."

Here are some more Storage reviews from around the web:

Storage

Source: [H]ard|OCP
Subject: Editorial, Storage
Manufacturer: Various
Tagged: tlc, ssd, slc, mlc, endurance

Taking an Accurate Look at SSD Write Endurance

Last year, I posted a rebuttal to a paper describing the future of flash memory as ‘bleak’. The paper went through great (and convoluted) lengths to paint a tragic picture of flash memory endurance moving forward. Yesterday a newer paper hit Slashdotthis one doing just the opposite, and going as far as to assume production flash memory handling up to 1 Million erase cycles. You’d think that since I’m constantly pushing flash memory as a viable, reliable, and super-fast successor to Hard Disks (aka 'Spinning Rust'), that I’d just sit back on this one and let it fly. After all, it helps make my argument! Well, I can’t, because if there are errors published on a topic so important to me, it’s in the interest of journalistic integrity that I must now post an equal and opposite rebuttal to this one – even if it works against my case.

First I’m going to invite you to read through the paper in question. After doing so, I’m now going to pick it apart. Unfortunately I’m crunched for time today, so I’m going to reduce my dissertation into the form of some simple bulleted points:

  • Max data write speed did not take into account 8/10 encoding, meaning 6Gb/sec = 600MB/sec, not 750MB/sec.
  • The flash *page* size (8KB) and block sizes (2MB) chosen more closely resemble that of MLC parts (not SLC – see below for why this is important).
  • The paper makes no reference to Write Amplification.

Perhaps the most glaring and significant is that all of the formulas, while correct, fail to consider the most important factor when dealing with flash memory writes – Write Amplification.

Before geting into it, I'll reference the excellent graphic that Anand put in his SSD Relapse piece:

writeamplification2.png

SSD controllers combine smaller writes into larger ones in an attempt to speed up the effective write speed. This falls flat once all flash blocks have been written to at least once. From that point forward, the SSD must play musical chairs with the data on each and every small write. In a bad case, a single 4KB write turns into a 2MB write. For that example, Write Amplification would be a factor of 500, meaning the flash memory is cycled at 500x the rate calculated in the paper. Sure that’s an extreme example, but the point is that without referencing amplification at all, it is assumed to be a factor of 1, which would only be the case if you were only writing 2MB blocks of data to the SSD. This is almost never the case, regardless of Operating System.

After posters on Slashdot called out the author on his assumptions of rated P/E cycles, he went back and added two links to justify his figures. The problem is that the first links to a 2005 data sheet for 90nm SLC flash. Samsung’s 90nm flash was 1Gb per die (128MB). The packages were available with up to 4 dies each, and scaling up to a typical 16-chip SSD, that only gives you an 8GB SSD. Not very practical. That’s not to say 100k is an inaccurate figure for SLC endurance. It’s just a really bad reference to use is all. Here's a better one from the Flash Memory Summit a couple of years back:

flash-1.png

The second link was a 2008 PR blast from Micron, based on their proposed pushing of the 34nm process to its limits. “One Million Write Cycles” was nothing more than a tag line for an achievement accomplished in a lab under ideal conditions. That figure was never reached in anything you could actually buy in a SATA SSD. A better reference would be from that same presentation at the Summit:

flash-2.png

This shows larger process nodes hitting even beyond 1 million cycles (given sufficient additional error bits used for error correction), but remember it has to be something that is available and in a usable capacity to be practical for real world use, and that’s just not the case for the flash in the above chart.

At the end of the day, manufacturers must balance cost, capacity, and longevity. This forces a push towards smaller processes (for more capacity per cost), with the limit being how much endurance they are willing to give up in the process. In the end they choose based on what the customer needs. Enterprise use leans towards SLC or eMLC, as they are willing to spend more for the gain in endurance. Typical PC users get standard MLC and now even TLC, which are *good enough* for that application. It's worth noting that most SSD failures are not due to burning out all of the available flash P/E cycles. The vast majority are due to infant mortality failures of the controller or even due to buggy firmware. I've never written enough to any single consumer SSD (in normal operation) to wear out all of the flash. The closest I've come to a flash-related failure was when I had an ioDrive fail during testing by excessive heat causing a solder pad to lift on one of the flash chips.

All of this said, I’d love to see a revisit to the author’s well-structured paper – only based on the corrected assumptions I’ve outlined above. *That* is the type of paper I would reference when attempting to make *accurate* arguments for SSD endurance.

OCZ Technology Delivers Vertex 3 with 20 Nanometer Flash

Subject: Storage | February 19, 2013 - 02:47 PM |
Tagged: ocz, vertex 3, 20nm, mlc

SAN JOSE, CA—February 19, 2012—OCZ Technology Group, Inc. (Nasdaq:OCZ), a leading provider of high-performance solid-state drives (SSDs) for computing devices and systems, today announced a new 20 nanometer (nm) NAND flash version of its award-winning Vertex 3 SSD Series. The new Vertex 3.20 SSD is a 2.5-inch, 6Gbps SATA III-based Multi-Level Cell (MLC) drive that implements the feature-set of the Vertex 3 Series but is built around smaller, state-of-the-art NAND flash process geometry.

Being that the Vertex 3 Series is one of OCZ’s most popular SSDs to date, and has received numerous accolades from media reviewers globally, the implementation of 20nm NAND flash will extend its availability and enable mainstream users of mobile and desktop platforms to improve gaming, multimedia, and the overall computing experience over traditional hard disk drives (HDDs) and other competing SSDs. The Vertex 3.20 SSD will be available in 120GB and 240GB storage capacities, with 480GB capacities to follow soon.

Utilizing the proven and effective LSI SandForce® SF-2200 processor, the Vertex 3.20 SSD delivers exceptional performance of synchronous 20nm NAND flash supporting read bandwidth up to 550MB/s, write bandwidth up to 520MB/s, random read performance up to 35,000 input/output operations per second (IOPS), and random write performance up to 65,000 IOPS. It is also optimized to provide excellent endurance and reliability coupled with power efficiency.

“OCZ is always looking for ways to deliver superior solid state drive storage performance and features, as well as making this technology more accessible to the complete range of customers,” said Daryl Lang, Senior Vice President of Product Management for OCZ Technology. “The Vertex 3 has been a popular SSD series among consumers and implementing the newer, smaller process geometry will not only extend its life, but enables mainstream users with an excellent computing experience at a competitive price point.”

The Vertex 3.20 SSD is supported by a 3-year warranty to ensure customer satisfaction and will be available shortly through OCZ’s global channel in 120GB and 240GB storage capacities.

Vertex3_20.jpg

Revisit the Vector, it is worth it

Subject: Storage | February 15, 2013 - 04:26 PM |
Tagged: vector, ssd, sata, ocz, mlc, Indilinx Barefoot

Just in case you forgot how impressive the OCZ Vector 256GB is, Overclockers Club would like to remind you.  The Indilinx Barefoot 3 controller is matched with low cost 25nm MLC IMFT NAND modules and 512MB of DDR3-1600 RAM for a cache.  That translates to incredibly fast performance but without the high price of other drives.  The 256GB model sits currently just under $1/GB, it is not the least expensive SSD available but when you consider the speeds this drive operates at it is the best value.  Remind yourself where OCZ's Vector sits in the pack by reading on at OCC.

barefoot3_diagram-mod.png

"OCZ's Vector line of solid state drives is every bit the performer that the Vertex 4 drives are with very few exceptions. In many of the tests, the two fastest drives were the Vertex 4 and OCZ's latest Indilinx Barefoot 3-equipped Vector. The only real weakness I saw was that the Vector was less frugal with the CPU cycles than the other Indilinx equipped drives. OCZ's move to the Barefoot 3 controller is beginning to pay dividends as it uses the technologies it has available in-house after the Indilinx and PLX acquisitions. It's taken a while to go all-in but that time has come. As the first totally in-house designed controller from OCZ, it seems to have hit on a controller that does better at managing real world usage scenarios and handling both compressible and incompressible data streams.”

Here are some more Storage reviews from around the web:

Storage

Forget Cherryville, here's Jaycrest

Subject: Storage | February 8, 2013 - 07:25 PM |
Tagged: SF-2281 controller, Jaycrest, Intel, 335 Series, 240 GB, 20nm

The Intel 520 and 335 series are very similar, both using the SF-2281 controller with the difference being the flash chips.  The 335 uses the newly designed 20nm MLC flash which gives both higher storage density, retains the same 3,000 Program/Erase cycles as the 25nm 520 and it keeps the cost of the drives down.  [H]ard|OCP put it through tests similar to the battery of benchmarks Al did and it will come as no surprise that their results were similar as well.  This drive is never going to beat flagship SSDs in terms of raw performance but for readers who are unwilling to spend top dollar for an SSD the Intel 335 series allows you to pick up a 256GB SSD for under $200 without sacrificing anything but a bit of performance in certain specific usage scenarios.

H_335.jpg

"Intel has released its new Intel 335 Series SSDs featuring 20nm MLC NAND and a SandForce SF-2281 processor. Its new MLC NAND boasts impressive power and write specifications. This SSD is geared for the budget market, but will it be able to compete with low-cost TLC alternatives?"

Here are some more Storage reviews from around the web:

Storage

Source: [H]ard|OCP
Subject: Storage

Introduction, Specifications and Packaging

Introduction

With newer and faster SSDs coming to market, we should not forget those capable controllers of yesteryear. There are plenty of folks out there cranking out products based on controllers that were until very recently the king of the hill. Competition is great for the market, and newer product launches have driven down the cost of the older SandForce 2281 SATA 6Gb/sec controller. ADATA makes a product based on this controller, and it's high time we gave it a look:

130205-221436-4.13.jpg

The ADATA XPG SX900 launched mid last year, and was ADATA's first crack at the eXtended capacity variant of the SandForce firmware. This traded off some of the spare area in the interest of more capacity for the consumer.

Read on for the full review!

Intel Launches New 335 Series SSD In 180GB Capacity

Subject: Storage | February 5, 2013 - 03:16 AM |
Tagged: ssd, SandForce SF-2281, sandforce, mlc, intel 335, Intel

Intel has added a new drive to its existing 335 SSD series. The new drive offers up 180GB of storage, but maintains the same level of read and write performance as its larger 240GB sibling.

Intel 335 Series 180GB SSD.jpg

The 180GB version uses 20nm MLC NAND flash paired with a SandForce SF-2281 controller. According to the Intel-provided spec sheet (PDF), the new drive is capable of sustained read and write speeds of 500 MB/s and 450 MB/s respectively. Further, the drive maxes out at 42,000 random read IOPS and 52,000 random write IOPS.

The drive will come in the 2.5” form factor, but is 9.5mm thick (meaning it will not work in all notebooks). Reportedly, Intel has redesigned the casing to include a schematic/blueprint graphic alongside the Intel logo.

Intel rates the 180GB 335 series SSD at 1.2 million MTBF and is warranted for three years. The drive can currently be found online for around $180, making it right around the $1/GB mark. Interestingly, the larger 240GB model is currently retailing for around $195. Therefore, if you can spare the extra $15, the 240GB model is the better deal.

Source: Intel