Meet the ADATA XPG SX930 family of SSDs

Subject: Storage | August 10, 2015 - 03:07 PM |
Tagged: adata, XPG SX930, JMF670H

ADATA's new XPG SX930 series is aimed at enthusiasts on a budget, the 120GB is about $65, the 240GB at $110 and the 480GB at $200.  The SSDs use the JMicron JMF670H controller, not one we have seen before and they also have a pseudo SLC cache which grows with the size of the drive from 4GB to 8GB to 16GB for the 480GB model.  The SSD Review tested out all three drives and found that the advertised speeds of 550MB/s read and 460MB/s write were more or less accurate and the drives did fairly well in their other tests as well.  If you need more speedy storage and are on a budget you should check out their full review.

Adata-XPG-SX930-SSD-Family-1024x683.jpg

"ADATA has memory products for all sections of the market, from consumer to industrial. As of late they have released a new consumer SSD, the XPG SX930. It is marketed towards the gamer and overclocker crowd at a pretty competitive price point."

Here are some more Storage reviews from around the web:

Storage

Intel SSD 750 Series 800GB SKU Appears!

Subject: Storage | August 6, 2015 - 06:37 PM |
Tagged: SSD 750, ssd, pcie, NVMe, Intel

Back when we reviewed the Intel SSD 750, it was only available in a 400GB and 1.2TB capacity, leaving a wide expanse of capacity between those two figures.

DSC03622-.JPG

A new 800GB SKU of the Intel SSD 750 Series of PCIe SSDs was hinted at with the Skylake launch press materials, and it appears to have been a reality:

ARK.png

They may not be on the shelves yet, but appearing on ARK is a pretty good indicator that these are coming soon. We don't have pricing yet, but I would suspect a cost/GB closer to the 1.2TB model than to the 400GB model, which should come in at around $700. Performance sees a slight hit for the 800GB model, likely since this is an 'uneven' number of dies for the design of the SSD DC P3500 line it was based on.

Which would you prefer - a single 800GB or a pair of 400GB SSD 750's in a RAID (now that it is possible)?

Source: Intel ARK
Subject: Storage
Manufacturer: Intel
Tagged: Z170, Skylake, rst, raid, Intel

A quick look at storage

** This piece has been updated to reflect changes since first posting. See page two for PCIe RAID results! **

Our Intel Skylake launch coverage is intense! Make sure you hit up all the stories and videos that are interesting for you!

When I saw the small amount of press information provided with the launch of Intel Skylake, I was both surprised and impressed. The new Z170 chipset was going to have an upgraded DMI link, nearly doubling throughput. DMI has, for a long time, been suspected as the reason Intel SATA controllers have pegged at ~1.8 GB/sec, which limits the effectiveness of a RAID with more than 3 SSDs. Improved DMI throughput could enable the possibility of a 6-SSD RAID-0 that exceeds 3GB/sec, which would compete with PCIe SSDs.

ASUS PCIe RAID.png

Speaking of PCIe SSDs, that’s the other big addition to Z170. Intel’s Rapid Storage Technology was going to be expanded to include PCIe (even NVMe) SSDs, with the caveat that they must be physically connected to PCIe lanes falling under the DMI-connected chipset. This is not as big of as issue as you might think, as Skylake does not have 28 or 40 PCIe lanes as seen with X99 solutions. Z170 motherboards only have to route 16 PCIe lanes from the CPU to either two (8x8) or three (8x4x4) PCIe slots, and the remaining slots must all hang off of the chipset. This includes the PCIe portion of M.2 and SATA Express devices.

PCH storage config.png

Continue reading our preview of the new storage options on the Z170 chipset!!

Breaking: Intel and Micron announce 3D XPoint Technology - 1000x Faster Than NAND

Subject: Storage | July 28, 2015 - 12:41 PM |
Tagged: XPoint, non-volatile RAM, micron, memory, Intel

Everyone that reads SSD reviews knows that NAND Flash memory comes with advantages and disadvantages. The cost is relatively good as compared to RAM, and the data remains even with power removed (non-volatile), but there are penalties in the relatively slow programming (write) speeds. To help solve this, today Intel and Micron jointly launched a new type of memory technology.

XPoint.png

XPoint (spoken 'cross point') is a new class of memory technology with some amazing characteristics. 10x the density (vs. DRAM), 1000x the speed, and most importantly, 1000x the endurance as compared to current NAND Flash technology.

2303661_3D_XPoint_Die.jpg

128Gb XPoint memory dies, currently being made by Intel / Micron, are of a similar capacity to current generation NAND dies. This is impressive for a first generation part, especially since it is physically smaller than a current gen NAND die of the same capacity.

Intel stated that the method used to store the bits is vastly different from what is being used in NAND flash memory today. Intel stated that the 'whole cell' properties change as a bit is being programmed, and that the fundamental physics involved is different, and that it is writable in small amounts (NAND flash must be erased in large blocks). While they did not specifically state it, it looks to be phase change memory (*edit* at the Q&A Intel stated this is not Phase Change). The cost of this technology should end up falling somewhere between the cost of DRAM and NAND Flash.

IMFT.jpg

3D XPoint memory is already being produced at the Intel / Micron Flash Technology plant at Lehi, Utah. We toured this facility a few years ago.

Intel and Micron stated that this technology is coming very soon. 2016 was stated as a launch year, and there was a wafer shown to us on stage:

DSC03273.JPG

You know I'm a sucker for good wafer / die photos. As soon as this session breaks I'll get a better shot!

There will be more analysis to follow on this exciting new technology, but for now I need to run to a Q&A meeting with the engineers who worked on it. Feel free to throw some questions in the comments and I'll answer what I can!

*edit* - here's a die shot:

DSC03304.JPG

Added note - this wafer was manufactured on a 20nm process, and consists of a 2-layer matrix. Future versions should scale with additional layers to achieve higher capacities.

Press blast after the break.

Source: Intel

Something is cooking in San Francisco

Subject: Storage | July 28, 2015 - 11:26 AM |
Tagged: Intel, micron, flash

DSC03253.JPG

...stay tuned!

Team Red gets NASty with QNAP

Subject: Storage | July 23, 2015 - 07:38 PM |
Tagged: TVS-x63, qnap, Puma, amd

AMD is exploring alternate product routes to raise their income and the latest seems to be the Puma powered QNAP TVS-x63.  It is a four bay NAS which is powered by the 2.4GHz AMD GX424-CC SoC which happens to have a 28 stream processor GCN Radeon clocked at 497 MHz.  It has a pair of gigabit ports with an optional add-in card offering a single 10Gb or two additional 1Gb ports, though that will raise you above the cost of the $630 base model. Bjorn3d found the power consumption to be higher than the competition but the overall operation was flawless.

QNAP_TVS_463_8G-660x330.jpg

"The QNAP TVS-x63 marked the world’s first NAS featuring AMD processor. AMD’s new strategy is targeting the markets with high profit return and the company is returning to the server market. NAS, by extension, is like a small scale server, so it makes sense to see AMD putting their processors into these devices."

Here are some more Storage reviews from around the web:

Storage

Source: Bjorn3D

Samsung Announces VNAND Powered 4TB PM863 and 2TB SM863 SATA Enterprise SSDs

Subject: Storage | July 20, 2015 - 01:01 PM |
Tagged: vnand, ssd, SM863, sata, Samsung, PM863

Take the Samsung 850 Pro and 850 EVO, add some Tantalum Capacitors for enhanced power loss protection, tune their firmware for enterprise workloads and QoS, and what do you get?

600x600_2.png

...you get the Samsung PM863 and SM863 lines of enterprise SSDs! These 2.5" SATA units were just announced, and as we suspected after reviewing the new 2TB 850 EVO and Pro, these new models can include even more flash packages, dramatically increasing the flash capacity. Here is a breakdown of the launch pricing and capacities:

SM863 (2-bit MLC VNAND):

  • 120GB - $140 ($1.17/GB)
  • 240GB - $180 ($0.75/GB)
  • 480GB - $330 ($0.69/GB)
  • 960GB - $870 ($0.91/GB) < possible typo $640 ($0.67/GB)
  • 1.92TB - $1260 ($0.66/GB)

PM863 (3-bit MLC VNAND):

  • 120GB - $125 ($1.04/GB)
  • 240GB - $160 ($0.67/GB)
  • 480GB - $290 ($0.60/GB)
  • 960GB - $550 ($0.57/GB)
  • 1.92TB - $1100 ($0.57/GB)
  • 3.84TB - $2200 ($0.57/GB)

Aside from the possible typo in the pricing I informed Samsung of the pricing oddity and they have replied with a correction. Their site should be updated to reflect this correction shortly.

These are some very competitive prices for enterprise SSDs, and the fact that the TLC version can cram just under 4TB into a 7mm 2.5" form factor is just astounding. The MLC version capacities appear to still follow that of the 850 Pro, minus a bit of available capacity due to higher levels of over-provisioning.

More impressive is the endurance ratings of these SSDs. The SM863 line is rated (varying by capacity) from 770 Terabytes Written (TBW) to an astonishing 12,320 TBW for the 1.92TB model! That's over 12 Petabytes! The PM863 is rated lower as it is TLC based, but is still no slouch as it ranges from 170 to 5,600 TBW for the 3.84TB capacity. The SM863 carries a 5-year warranty, while the PM863 drops that to 3-years.

We've been waiting to see Samsung's 32-layer VNAND appear in enterprise units for some time now, and look forward to testing them just as soon as we can get our hands on them!

Full press blast after the break.

Source: Samsung

SATA SSD Roundup

Subject: Storage | July 9, 2015 - 04:37 PM |
Tagged: Samsung, 850 EVO, 850 PRO, M600, micron, Sandisk Extreme Pro, ssd, roundup, sata

[H]ard|OCP has just posted a roundup of four affordable SATA SSDs to show which would be the best one to pick up as the majority of users are not able to afford an NVME PCIe SSD.  The drives are all within $50 above or below $200, with the 850 PRO having the highest cost per gigabyte and the EVO the least.  They test content creation and moving large files as well as synthetic benchmarks to come out with a ranking of the four drives which you can refer to if you will be shopping for storage in the near future.  In comparison they use the G.SKILL Phoenix Blade to show off what the new technology can do, for those that can afford it.

1436212589ZYfSOCTOFl_1_1.jpg

"Despite the performance benefits, PCIe SSDs remain an expensive niche market. That means that most of us are not going to be loading up a high end system with PCIe SSDs. Most of us mere mortals will be using SATA SSDs. We tested some of the best SATA drives with enthusiast-friendly price tags."

Here are some more Storage reviews from around the web:

Storage

 

Source: [H]ard|OCP
Subject: Storage
Manufacturer: OCZ

Introduction, Specifications and Packaging

Introduction:

Since their acquisition by Toshiba in early 2014, OCZ has gradually transitioned their line of SSD products to include parts provided by their parent company. Existing products were switched over to Toshiba flash memory, and that transition went fairly smoothly, save the recent launch of their Vector 180 (which had a couple of issues noted in our review). After that release, we waited for the next release from OCZ, hoping for something fresh, and that appears to have just happened:

150707-180041.jpg

OCZ sent us a round of samples for their new OCZ Trion 100 SSD. This SSD was first teased at Computex 2015. This new model would not only use Toshiba sourced flash memory, it would also displace the OCZ / Indilinx Barefoot controller with Toshiba's own. Then named 'Alishan', this is now officially called the 'Toshiba Controller TC58'. As we found out during Computex, this controller employs Toshiba's proprietary Quadruple Swing-By Code (QSBC) error correction technology:

QSBC.png

Error correction tech gets very wordy, windy, and technical and does so very quickly, so I'll do my best to simplify things. Error correction is basically some information interleaved within the data stored on a given medium. Pretty much everything uses it in some form or another. Some Those 700MB CD-R's you used to burn could physically hold over 1GB of data, but all of that extra 'unavailable' space was error correction necessary to deal with the possible scratches and dust over time. Hard drives do the same sort of thing, with recent changes to how the data is interleaved. Early flash memory employed the same sort of simple error correction techniques initially, but advances in understanding of flash memory error modes have led to advances in flash-specific error correction techniques. More advanced algorithms require more advanced math that may not easily lend itself to hardware acceleration. Referencing the above graphic, BCH is simple to perform when needed, while LDPC is known to be more CPU (read SSD controller CPU) intensive. Toshiba's proprietary QSB tech claims to be 8x more capable of correcting errors, but what don't know what, if any, performance penalty exists on account of it.

We will revisit this topic a bit later in the review, but for now lets focus on the other things we know about the Trion 100. The easiest way to explain it is this is essentially Toshiba's answer to the Samsung EVO series of SSDs. This Toshiba flash is configured in a similar fashion, meaning the bulk of it operates in TLC mode, while a portion is segmented off and operates as a faster SLC-mode cache. Writes first go to the SLC area and are purged to TLC in the background during idle time. Continuous writes exceeding the SLC cache size will drop to the write speed of the TLC flash.

Read on for the full review!

Is your game library getting huge? Maybe a 2TB SSD is the answer

Subject: Storage | July 6, 2015 - 03:28 PM |
Tagged: ssd, Samsung, 850 PRO, 850 EVO, 2TB

Samsung is extending their 850 EVO and Pro lineups to include 2TB versions of the popular SSDs thanks to the use of 3D-VNAND; three bit memory on the EVO and two bit on the Pro.  They are rated at the same speeds as their 500GB and above counterparts and The SSD Review had a chance to test that. Interestingly they did indeed find performance differences between the 1TB and 2TB model of the same design, which you can check out in the full review.  Their results were not quite the same as Al's review which was just posted, you should compare the two reviews as well as the systems used for theories on why that is.  You can expect to pay ~$1000 for the 850 Pro 2TB and ~$800 for the 850 EVO 2TB.

Samsung-Pro-and-EVO-2TB-SSD-Exterior-Cases.png

"If you look back over the past several years, there have always been three constants that needed to be addressed in order for SSDs to become a viable consumer solution to storage; value, reliability and capacity. One of our first SSD reviews was on an MTron 32GB SSD with a whopping price tag of more than $1500…and they sold!"

Here are some more Storage reviews from around the web:

Storage