Intel Revises All SSD Product Lines - 3D NAND Everywhere!

Subject: Storage | August 25, 2016 - 06:26 PM |
Tagged: ssd, Pro 6000p, Intel, imft, E 6000p, E 5420s, DC S3520, DC P3520, 600p, 3d nand

Intel announced the production of 3D NAND a little over a year ago, and we've now seen production ramp up to the point where they are infusing it into nearly every nook and cranny of their SSD product lines.

ssd-3d-nand-composite-form-factor-16x9.png.rendition.intel_.web_.720.405.png

The most relevant part for our readers will be a long overdue M.2 2280 SSD. These will kick off with the 600p:

ch-1.jpg

An overseas forum member over at chiphell got their hands on a 600p and ran some quick tests. From their photo (above), we can confirm the controller is not from Intel, but rather from Silicon Motion. The NAND is naturally from Intel, as is likely their controller firmware implementation, as these parts go through the same lengthy validation process as their other products.

Intel is going for the budget consumer play here. The flash will be running in TLC mode, likely with an SLC cache. Specs are respectable - 1.8GB/s reads, 560MB/s writes, random read 155k, random write 128k (4KB QD=32). By respectable specs I mean in light of the pricing:

600p-6000p pricing.png

Wow! These prices are ranging from $0.55/GB at 128GB all the way down to $0.35/GB for the 1TB part.

You might have noticed the Pro 6000p in that list. Those are nearly identical to the 600p save some additional firmware / software tweaks to support IT infrastructure remote secure erase.

Intel also refreshed their DataCenter (DC) lineup. The SSD DC S3520 (SATA) and P3520 (PCIe/NVMe) were also introduced as a refresh, also using Intel's 3D NAND. We published our exclusive review of the Intel SSD DC P3520 earlier today, so check there for full details on that enterprise front. Before we move on, a brief moment of silence for the P3320 - soft-launched in April, but discontinued before it shipped. We hardly knew ye.

Lastly, Intel introduced a few additional products meant for the embedded / IoT sector. The SSD E 6000p is an M.2 PCIe part similar to the first pair of products mentioned in this article, while the SSD E 5420s comes in 2.5" and M.2 SATA flavors. The differentiator on these 'E' parts is enhanced AES 256 crypto.

Most of these products will be available 'next week', but the 600p 360GB (to be added) and 1TB capacities will ship in Q4.

Abbreviated press blast appears after the break.

Source: Intel
Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

Intel launched their Datacenter 'P' Series parts a little over two years ago. Since then, the P3500, P3600, and P3700 lines have seen various expansions and spinoffs. The most recent to date was the P3608, which packed two full P3600's into a single HHHL form factor. With Intel 3D XPoint / Optane parts lurking just around the corner, I had assumed there would be no further branches of the P3xxx line, but Intel had other things in mind. IMFT 3D NAND offers greater die capacities at a reduced cost/GB, apparently even in MLC form, and Intel has infused this flash into their new P3520:

DSC03033.jpg

Remember the P3500 series was Intel's lowest end of the P line, and as far as performance goes, the P3520 actually takes a further step back. The play here is to get the proven quality control and reliability of Intel's datacenter parts into a lower cost product. While the P3500 launched at $1.50/GB, the P3520 pushes that cost down *well* below $1/GB for a 2TB HHHL or U.2 SSD.

Read on for our full review of the Intel DC P3520 SSD!

More space than even Jimmy Stewart would need to satisfy his voyeurism

Subject: Storage | August 18, 2016 - 02:59 PM |
Tagged: skyhawk, Seagate, rear window, hitchcock, 10TB

Seagate designed the 10TB SkyHawk HDD for recording video surveillance by adding in firmware they refer to as ImagePerfect.  This is designed for handling 24/7 surveillance and extends the endurance life of the drive to 180TB a year, for the length of the three year warranty.  Constantly recording video means this drive will write far more often than most other usages scenarios and reads will be far less important.  eTeknix tried the drive out in their usual suite of benchmarks; being somewhat difficult to set up a test to verify the claimed support for up to 64HD recordings simultaneously.  If you are looking for durable storage at a reasonable price and might even consider needing more than eight drives of storage you should check the SkyHawk out.

Seagate_SkyHawk-Photo-top-angle.jpg

"I’ve recently had a look at the 10TB IronWolf NAS HDD from Seagate and today it is time to take a closer look at its brother, the brand new SkyHawk DVR and NVR hard disk drive with a massive 10TB capacity. Sure, you could use NAS optimized drives for simple video setups, but having a video and camera optimized surveillance disk does bring advantages. Especially when your recorded video is critical."

Here are some more Storage reviews from around the web:

Storage

Source: eTeknix

IDF 2016: ScaleMP Merges Software-Defined Memory With Storage-Class Memory, Makes Optane Work Like RAM

Subject: Storage | August 16, 2016 - 04:05 PM |
Tagged: Virtual SMP, SMP, SDM-S, SDM-F, ScaleMP, IDF 2016, idf

ScaleMP has an exciting announcement at IDF today, but before we get into it, I need to do some explaining. Most IT specialists know how to employ virtualization to run multiple virtual environments within the same server, but what happens when you want to go the other way around?

ScaleMP-3.png

You might not have known it, but virtualization can go both ways. ScaleMP make such a solution, and it enables some amazing combinations of hardware all thrown at a single virtualized machine. Imagine what could be done with a system containing 32,768 CPUs and 2048TB (2PB) of RAM. Such a demand is actually more common than you might think:

ScaleMP-2.png

List of companies / applications of ScaleMP.

ScaleMP-4.png

ScaleMP's tech can fit into a bunch of different usage scenarios. You can choose to share memory, CPU cores, IO, or all three across multiple physical machines, all combined into a single beast of a virtualized OS, but with the launch of 3D XPoint there's one more thing that might come in handy as a sharable resource, as there is a fairly wide latency gap between NAND and RAM:

NAND RAM gap.png

Alright, now that we've explained the cool technology and the gap to be filled, onto the news of the day, which is that ScaleMP has announced that their Software Defined Memory tech has been optimized for Intel Optane SSDs. This means that ScaleMP / Optane customers will be able to combine banks of XPoint installed across multiple systems all into a single VM. Another key to this announcement is that due to the way ScaleMP virtualizes the hardware, the currently developing storage-class (NVMe) XPoint/Optane solutions can be mounted as if they were system memory, which should prove to be a nice stopgap until we see second generation 3D XPoint in DIMM form.

More to follow from IDF 2016. ScaleMP's press blast appears after the break.

IDF 2016: Intel To Demo Optane XPoint, Announces Optane Testbed for Enterprise Customers

Subject: Storage | August 16, 2016 - 02:00 PM |
Tagged: XPoint, Testbed, Optane, Intel, IDF 2016, idf

IDF 2016 is up and running, and Intel will no doubt be announcing and presenting on a few items of interest. Of note for this Storage Editor are multiple announcements pertaining to upcoming Intel Optane technology products.

P1020336-.JPG

Optane is Intel’s branding of their joint XPoint venture with Micron. Intel launched this branding at last year's IDF, and while the base technology is as high as 1000x faster than NAND flash memory, full solutions wrapped around an NVMe capable controller have shown to sit at roughly a 10x improvement over NAND. That’s still nothing to sneeze at, and XPoint settles nicely into the performance gap seen between NAND and DRAM.

XPoint.png

Since modern M.2 NVMe SSDs are encroaching on the point of diminishing returns for consumer products, Intel’s initial Optane push will be into the enterprise sector. There are plenty of use cases for a persistent storage tier faster than NAND, but most enterprise software is not currently equipped to take full advantage of the gains seen from such a disruptive technology.

DSC03304.JPG

XPoint die. 128Gbit of storage at a ~20nm process.

In an effort to accelerate the development and adoption of 3D XPoint optimized software, Intel will be offering enterprise customers access to an Optane Testbed. This will allow for performance testing and tuning of customers’ software and applications ahead of the shipment of Optane hardware.

U.2.jpg

I did note something interesting in Micron's FMS 2016 presentation. QD=1 random performance appears to start at ~320,000 IOPS, while the Intel demo from a year ago (first photo in this post) showed a prototype running at only 76,600 IOPS. Using that QD=1 example, it appears that as controller technology improves to handle the large performance gains of raw XPoint, so does performance. Given a NAND-based SSD only turns in 10-20k IOPS at that same queue depth, we're seeing something more along the lines of 16-32x performance gains with the Micron prototype. Those with a realistic understanding of how queues work will realize that the type of gains seen at such low queue depths will have a significant impact in real-world performance of these products.

future NVM.PNG

The speed of 3D XPoint immediately shifts the bottleneck back to the controller, PCIe bus, and OS/software. True 1000x performance gains will not be realized until second generation XPoint DIMMs are directly linked to the CPU.

The raw die 1000x performance gains simply can't be fully realized when there is a storage stack in place (even an NVMe one). That's not to say XPoint will be slow, and based on what I've seen so far, I suspect XPoint haters will still end up burying their heads in the sand once we get a look at the performance results of production parts.

intel-optane-ssd-roadmap.jpg

Leaked roadmap including upcoming Optane products

Intel is expected to show a demo of their own more recent Optane prototype, and we suspect similar performance gains there as their controller tech has likely matured. We'll keep an eye out and fill you in once we've seen Intel's newer Optane goodness it in action!

FMS 2016: Phison E8 Controller - NVMe Speed at SATA Cost

Subject: Storage | August 11, 2016 - 12:27 PM |
Tagged: ssd, PS5008-E8/E8T, PS5008-E8, PS5007-E7, phison, PCIe 3.0 x2, NVMe, FMS 2016, FMS, E8

I visited Phison to check out their new E8 controller:

DSC02725.jpg

Phsion opted to take a step back from the higher performance PCIe 3.0 x4 NVMe controllers out there, offering a solution with half the lanes. PCIe 3.0 x2 can still handle 1.5 GB/s, and this controller can exceed 200,000 random IOPS. Those specs are actually in-line with what most shipping x4 solutions offer today, meaning the E8 is more effectively saturating its more limited connectivity. Reducing the number of lanes helps Phison reduce the component cost of this controller to match the cost of typical SATA controllers while tripling the performance, greatly reducing the cost to produce NVMe SSDs.

In addition to 3D Flash support, the E8 is also a DRAM-less controller, meaning it has a small internal SRAM cache and has been architected to not need external DRAM installed on the PCB. DRAM-less means even lower costs. This can only be a good thing, since high performing NVMe parts at SATA costs is going to drive down the costs of even faster NVMe solutions, which is great for future buyers.

Press blast after the break.

Source: Phison

FMS 2016: Micron QuantX XPoint Prototype SSD Spotted

Subject: Storage | August 11, 2016 - 12:06 PM |
Tagged: FMS, FMS 2016, XPoint, micron, QuantX, nand, ram

Earlier this week, Micron launched their QuantX branding for XPoint devices, as well as giving us some good detail on expected IOPS performance of solutions containing these new parts:

U.2.jpg

Thanks to the very low latency of XPoint, the QuantX solution sees very high IOPS performance at a very low queue depth, and the random performance very quickly scales to fully saturate PCIe 3.0 x4 with only four queued commands. Micron's own 9100 MAX SSD (reviewed here), requires QD=256 (64x increase) just to come close to this level of performance! At that same presentation, a PCIe 3.0 x8 QuantX device was able to double that throughput at QD=8, but what are these things going to look like?

DSC02634.jpg

The real answer is just like modern day SSDs, but for the time being, we have the prototype unit pictured above. This is essentially an FPGA development board that Micron is using to prototype potential controller designs. Dedicated ASICs based on the final designs may be faster, but those take a while to ramp up volume production.

DSC02636.jpg

So there it is, in the flesh, nicely packaged and installed on a complete SSD. Sure it's a prototype, but Intel has promised we will see XPoint before the end of the year, and I'm excited to see this NAND-to-DRAM performance-gap-filling tech come to the masses!

DSC02095.jpg

FMS 2016: Liqid Combines Quad M.2 in to Powerful Packages

Subject: Storage | August 11, 2016 - 11:18 AM |
Tagged: FMS, FMS 2016, Liqid, kingston, toshiba, phison, U.2, HHHL, NVMe, ssd

A relative newcomer this year at Flash Memory Summit was Liqid. These guys are essentially creating an ecosystem from a subset of parts. Let's start with Toshiba:

DSC02652.jpg

At Toshiba's booth, we spotted their XG3 being promoted as being part of the Liqid solution. We also saw a similar demo at the Phison booth, meaning any M.2 parts can be included as part of their design. Now let us get a closer look at the full package options and what they do:

DSC02316.jpg

This demo, at the Kingston booth, showed a single U.2 device cranking out 835,000 4k IOPS. This is essentially saturating its PCIe 3.0 x4 link with random IO's, and it actually beats the Micron 9100 that we just reviewed!

DSC02317.jpg

How can it pull this off? The trick is that there are actually four M.2 SSDs in that package, along with a PLX switch. The RAID must be handled on the host side, but so long as you have software that can talk to multiple drives, you'll get full speed from this part.

More throughput can be had by switching to a PCIe 3.0 x8 link on a HHHL form factor card:

DSC02318.jpg

That's 1.3 million IOPS from a single HHHL device! Technically this is four SSDs, but still, that's impressively fast and is again saturating the bus, but this time it's PCIe 3.0 x8 being pegged!

DSC02319.jpg

We'll be tracking Liqid's progress over the coming months, and we will definitely test these solutions as they come to market (we're not there just yet). More to follow from FMS 2016!

FMS 2016: Supermicro All-Flash NVMe Systems - Switching PCIe up to 48 SSDs!

Subject: Storage | August 11, 2016 - 10:59 AM |
Tagged: FMS, SYS-2028U-TN24R4T+, SYS-1028U-TN10RT+, supermicro, SSG-2028R-NR48N, server, NVMe, FMS 2016

Supermicro was at FMS 2016, showing off some of their NVMe chassis:

DSC02290.jpg

The first model is the SYS-1028U-TN10RT+. This 1U chassis lets you hot swap 10 2.5" U.2 SSDs, connecting all lanes directly to the host CPUs.

DSC02294.jpg

Supermicro's custom PCB and interposer links all 40 PCIe lanes to the motherboard / CPUs.

DSC02291.jpg

Need more drives installed? Next up is the SYS-2028U-TN24R4T+, which uses a pair of PCIe switches to connect 24 U.2 SSDs to the same pair of CPUs.

DSC02292.jpg

Need EVEN MORE drives installed? The SSG-2028R-NR48N uses multiple switches to connect 48 U.2 SSDs in a single 2U chassis! While the switches will limit the ultimate sequential throughput of the whole package to PCIe 3.0 x40, we know that when it comes to spreading workloads across multiple SSDs, bandwidth bottlenecks are not the whole story, as latency is greatly reduced for a given workload. With a fast set of U.2 parts installed in this chassis, the raw IOPS performance would likely saturate all threads / cores of the installed Xeons before it saturated the PCIe bus!

More to follow as we wrap up FMS 2016!

Source: Supermicro

FMS 2016: Samsung To Announce 64-Layer 4th Gen V-NAND, 32TB 2.5" SSD

Subject: Storage | August 10, 2016 - 02:00 PM |
Tagged: 2.5, V-NAND, ssd, Samsung, nand, FMS 2016, FMS, flash, 64-Layer, 32TB, SAS, datacenter

At a huge press event like Flash Memory Summit, being in the right place at the right time (and with the right camera), matters greatly. I'll just let a picture say a thousand words for me here:

64-Layer V-NAND.jpg

..now this picture has been corrected for extreme parallax and was taken in far from ideal conditions, but you get the point. Samsung's keynote is coming up later today, and I have a hunch this will be a big part of what they present. We did know 64-Layer was coming, as it was mentioned in Samsung's last earnings announcement, but confirmation is nice.

*edit* now that the press conference has taken place, here are a few relevant slides:

DSC02430.jpg

DSC02438.jpg

With 48-Layer V-NAND announced last year (and still rolling out), it's good to see Samsung pushing hard into higher capacity dies. 64-Layer enables 512Gbits (64GB) per die, and 100MB/s per die maximum throughput means even lower capacity SSDs should offer impressive sequentials.

48-V-NAND.png

Samsung 48-Layer V-NAND. Pic courtesy of TechInsights.

64-Layer is Samsung's 4th generation of V-NAND. We've seen 48-Layer and 32-Layer, but few know that 24-Layer was a thing (but was mainly in limited enterprise parts).

We will know more shortly, but for now, dream of even higher capacity SSDs :)

*edit* and this just happened:

Photo Aug 10, 10 51 31.jpg

*additional edit* - here's a better picture taken after the keynote:

DSC02562.jpg

DSC02541.jpg

The 32TB model in their 2.5" form factor displaces last years 16TB model. The drive itself is essentially identical, but the flash packages now contain 64-layer dies, doubling the available capacity of the device.