Want Haswell-EP Xeons Without Expensive DDR4 Memory?

Subject: General Tech, Motherboards, Processors | September 20, 2014 - 03:51 PM |
Tagged: xeon, Haswell-EP, ddr4, ddr3, Intel

Well this is interesting and, while not new, is news to me.

ram.jpg

The upper-tier Haswell processors ushered DDR4 into the desktops for enthusiasts and servers, but DIMMs are quite expensive and incompatible with the DDR3 sticks that your organization might have been stocking up on. Despite the memory controller being placed on the processor, ASRock has a few motherboards which claim DDR3 support. ASRock, responding to Anandtech's inquiry, confirmed that this is not an error and Intel will launch three SKUs, one eight-core, one ten-core, and one twelve-core, with a DDR3-supporting memory controller.

The three models are:

  E5-2629 v3 E5-2649 v3 E5-2669 v3
Cores (Threads) 8 (16) 10 (20) 12 (24)
Clock Rate 2.4 GHz 2.3 GHz 2.3 Ghz
L3 Cache 20MB 25MB 30MB
TDP 85W 105W 120W

The processors, themselves, might not be cheap or easily attainable, though. There are rumors that Intel will require customers purchase at least a minimum amount. It might not be worth buying these processors unless you have a significant server farm (or similar situation).

Source: Anandtech

First Apple A8 Benchmarks Show... "Modest" Increase

Subject: General Tech, Processors, Mobile | September 12, 2014 - 10:30 AM |
Tagged: apple, apple a8, SoC, iphone 6, iphone 6 plus

So one of the first benchmarks for Apple's A8 SoC has been published to Rightware, and it is not very different from its predecessor. The Apple A7 GPU of last year's iPhone 5S received a score of 20,253.80 on the Basemark X synthetic benchmark. The updated Apple A8 GPU, found on the iPhone 6, saw a 4.7% increase, to 21204.26, on the same test.

apple-a8-rightware.png

Again, this is a synthetic benchmark and not necessarily representative of real-world performance. To me, though, it wouldn't surprise me if the GPU is identical, and the increase corresponds mostly to the increase in CPU performance. That said, it still does not explain the lack of increase that we see, despite Apple's switch to TSMC's 20nm process. Perhaps it matters more in power consumption and non-gaming performance? That does not align well with their 20% faster CPU and 50% faster GPU claims...

Speaking of gaming performance, iOS 8 introduces the Metal API, which is Apple's response to Mantle, DirectX 12, and OpenGL Next Initiative. Maybe that boost will give Apple a pass for a generation? Perhaps we will see the two GPUs (A7 and A8) start to diverge in the Metal API? We shall see when more benchmarks and reviews get published.

Source: Rightware

Qualcomm Snapdragon 210 Has LTE for Sub-$100 Devices

Subject: General Tech, Processors, Mobile | September 11, 2014 - 03:27 PM |
Tagged: qualcomm, snapdragon 210, snapdragon, LTE, cheap tablet

The Snapdragon 210 was recently announced by Qualcomm to be an SoC for cheap, sub-$100 tablets and mobile phones. With it, the company aims to bring LTE connectivity to that market segment, including Dual SIM support. It will be manufactured on the 28nm process, with up to four ARM CPU cores and a Qualcomm Adreno 304 GPU.

Qualcomm_Snapdragon_logo.png

According to Qualcomm, the SoC can decode 1080p video. It will also be able to manage cameras with up to 8 megapixels of resolution, including HDR, autofocus, auto white balance, and auto exposure. Let's be honest, you will not really get much more than that for a sub-$100 device.

The Snapdragon 210 has been given Quick Charge 2.0, normally reserved for the 400-line and up, refill the battery quickly when connected to a Quick Charge 2.0-supporting charger (ex: the Motorola Turbo Charger). Quick Charge 1.0 worked by optimizing how energy was delivered to the battery through a specification. Quick Charge 2.0 does the same, just with 60 watts of power (!!). For reference, the USB standard defines 2.5W, which is 5V at 0.5A, although the specification is regularly extended to 5 or 10 watts.

Devices featuring the Snapdragon 210 are expected for the first half of 2015.

Source: Qualcomm
Author:
Manufacturer: Intel

Core M 5Y70 Early Testing

During a press session today with Intel, I was able to get some early performance results on Broadwell-Y in the form of the upcoming Core M 5Y70 processor.

llama1.jpg

Testing was done on a reference design platform code named Llama Mountain and at the heart of the system is the Broadwell-Y designed dual-core CPU, the Core M 5Y70, which is due out later this year. Power consumption of this system is low enough that Intel has built it with a fanless design. As we posted last week, this processor has a base frequency of just 1.10 GHz but it can boost as high as 2.6 GHz for extra performance when it's needed.

Before we dive into the actual result, you should keep in mind a couple of things. First, we didn't have to analyze the systems to check driver revisions, etc., so we are going on Intel's word that these are setup as you would expect to see them in the real world. Next, because of the disjointed nature of test were were able to run, the comparisons in our graphs aren't as great as I would like. Still, the results for the Core M 5Y70 are here should you want to compare them to any other scores you like.

First, let's take a look at old faithful: CineBench 11.5.

cb11.png

UPDATE: A previous version of this graph showed the TDP for the Intel Core M 5Y70 as 15 watts, not the 4.5 watt listed here now. The reasons are complicated. Even though the Intel Ark website lists the TDP of the Core M 5Y70, Intel has publicly stated the processor will make very short "spikes" at 15 watts when in its highest Turbo Boost modes. It comes to a discussion of semantics really. The cooling capability of the tablet is only targeted to 4.5-6.0 watts and those very short 15 watt spikes can be dissipated without the need for extra heatsink surface...because they are so short. SDP anyone? END UPDATE

With a score of 2.77, the Core M 5Y70 processor puts up an impressive fight against CPUs with much higher TDP settings. For example, Intel's own Pentium G3258 gets a score of 2.71 in CB11, and did so with a considerably higher thermal envelope. The Core i3-4330 scores 38% higher than the Core M 5Y70 but it requires a TDP 3.6-times larger to do so. Both of AMD's APUs in the 45 watt envelope fail to keep up with Core M.

Continue reading our preview of Intel Core M 5Y70 Performance!!

Centaur Technology Extends Their Website Countdown...

Subject: General Tech, Processors, Mobile | September 9, 2014 - 05:38 PM |
Tagged: x86, VIA, centaur technologies

In early July, we reported on VIA's Centaur Technology division getting a new website. At the time, we anticipated that it would coincide with an announcement about Isaiah II, their rumored to be upcoming x86-based SoC (maybe even compatible with ARM, too).

Android-x86.png

Fifty-one days later, on August 31st, 2014, we came back at quarter-to-four EDT and let the website run its course, refreshing occasionally. 4 PM hit and... the counter stayed at 0 days, 0 hours, 0 minutes, and 0 seconds. Okay, I said. For about an hour, I refreshed occasionally because things could have happened on Labour Day weekend. I, then, came back late in the evening, and the day after. I next thought about it the week after, at which point the website was updated... with a timer that expires on September 30th, 2014.

Well... crap.

So by the end of the month, we may find out what Centaur is trying to announce. I am a little less confident in the breadth of the announcement, given that the company waited for the timer to lapse before correcting their mistake. I would expect that if their big announcement, like a new SoC, were to hold up the launch, the company would have known ahead of time. At the moment, it sounds like a typical website redesign which got delayed.

I will hopefully be pleasantly surprised come the end of the month.

Intel Developer Forum (IDF) 2014 Keynote Live Blog

Subject: Processors, Shows and Expos | September 9, 2014 - 08:02 AM |
Tagged: idf, idf 2014, Intel, keynote, live blog

Today is the beginning of the 2014 Intel Developer Forum in San Francisco!  Join me at 9am PT for the first of our live blogs of the main Intel keynote where we will learn what direction Intel is taking on many fronts!

intelicon.jpg

Author:
Subject: Processors
Manufacturer: Intel

Server and Workstation Upgrades

Today, on the eve of the Intel Developer Forum, the company is taking the wraps off its new server and workstation class high performance processors, Xeon E5-2600 v3. Known previously by the code name Haswell-EP, the release marks the entry of the latest microarchitecture from Intel to multi-socket infrastructure. Though we don't have hardware today to offer you in-house benchmarks quite yet, the details Intel shared with me last month in Oregon are simply stunning.

slides01.jpg

Starting with the E5-2600 v3 processor overview, there are more changes in this product transition than we saw in the move from Sandy Bridge-EP to Ivy Bridge-EP. First and foremost, the v3 Xeons will be available in core counts as high as 18, with HyperThreading allowing for 36 accessible threads in a single CPU socket. A new socket, LGA2011-v3 or R3, allows the Xeon platforms to run a quad-channel DDR4 memory system, very similar to the upgrade we saw with the Haswell-E Core i7-5960X processor we reviewed just last week.

The move to a Haswell-based microarchitecture also means that the Xeon line of processors is getting AVX 2.0, known also as Haswell New Instructions, allowing for 2x the FLOPS per clock per core. It also introduces some interesting changes to Turbo Mode and power delivery we'll discuss in a bit.

slides02.jpg

Maybe the most interesting architectural change to the Haswell-EP design is per core P-states, allowing each of the up to 18 cores running on a single Xeon processor to run at independent voltages and clocks. This is something that the consumer variants of Haswell do not currently support - every cores is tied to the same P-state. It turns out that when you have up to 18 cores on a single die, this ability is crucial to supporting maximum performance on a wide array of compute workloads and to maintain power efficiency. This is also the first processor to allow independent uncore frequency scaling, giving Intel the ability to improve performance with available headroom even if the CPU cores aren't the bottleneck.

Continue reading our overview of the new Intel Xeon E5-2600 v3 Haswell-EP Processors!!

Intel Networking: XL710 Fortville 40 Gigabit Ethernet and VXLAN Acceleration

Subject: General Tech, Networking, Processors | September 8, 2014 - 09:29 AM |
Tagged: xeon e5-2600 v3, xeon e5, Intel

So, to coincide with their E5-2600 v3 launch, Intel is discussing virtualized LANs and new, high-speed PCIe-based, networking adapters. Xeons are typically used in servers and their networking add-in boards will often shame what you see on a consumer machine. One of these boards supports up to two 40GbE connections, configurable to four 10GbE, for all the bandwidth.

intel-40gb-nic-01.png

The Intel XL710 is their new network controller, which I am told is being manufactured at 28nm. It is supposedly more power efficient, as well. In their example, a previous dual 10-gigabit controller will consume 5.2W of power while a single 40-gigabit will consume 3.3W. In terms of a network adapter, that is a significant reduction, which is very important in a data center due to the number of machines and the required air conditioning.

As for the virtualized networking part of the announcement, Intel is heavily promoting Software-defined networking (SDN). Intel mentioned two techniques to help increase usable bandwidth and decrease CPU utilization, which is important at 40 gigabits.

intel-40gb-nic-3.jpg

Receive Side Scaling disabled

The first is "generic segmentation offload" for VXLAN (VXLAN GSO) that allows the host of any given connection to chunk data more efficiently to send out over a virtual network.

intel-40gb-nic-2.jpg

Generic Segmentation Offload disabled

The second is TCP L4 Receive Side Scaling (RSS), which splits traffic between multiple receive queues (and can be managed by multiple CPU threads). I am not a network admin and I will not claim to know how existing platforms manage traffic at this level. Still, Intel seems to claim that this NIC and CPU platform will result in higher effective bandwidth and better multi-core CPU utilization (that I expect will lead to lower power consumption).

intel-40gb-nic-4.jpg

Both enabled

If it works as advertised, it could be a win for customers who buy into the Intel ecosystem.

Source: Intel

Intel Graphics Drivers Claim Significant Improvements

Subject: General Tech, Graphics Cards, Processors | September 6, 2014 - 02:25 PM |
Tagged: iris pro, iris, intel hd graphics, Intel

I was originally intending to test this with benchmarks but, after a little while, I realized that Ivy Bridge was not supported. This graphics driver starts and ends with Haswell. While I cannot verify their claims, Intel advertises up to 30% more performance in some OpenCL tasks and a 10% increase in games like Batman: Arkham City and Sleeping Dogs. They even claim double performance out of League of Legends at 1366x768.

inteltf2.jpg

Intel is giving gamers a "free lunch".

The driver also tunes Conservative Morphological Anti-Aliasing (CMAA). They claim it looks better than MLAA and FXAA, "without performance impact" (their whitepaper from March showed a ~1-to-1.5 millisecond cost on Intel HD 5000). Intel recommends disabling it after exiting games to prevent it from blurring other applications, and they automatically disable it in Windows, Internet Explorer, Chrome, Firefox, and Windows 8.1 Photo.

Adaptive Rendering Control was also added in this driver. This limits redrawing identical frames by comparing the ones it does draw with previously drawn ones, and adjusts the frame rate accordingly. This is most useful for games like Angry Birds, Minesweeper, and Bejeweled LIVE. It is disabled when not on battery power, or when the driver is set to "Maximum Performance".

The Intel Iris and HD graphics driver is available from Intel, for both 32-bit and 64-bit Windows 7, 8, and 8.1, on many Haswell-based GPUs.

Source: Intel

Intel Sent Us a Containment Chamber with Parts Inside

Subject: Motherboards, Processors, Chipsets, Memory, Storage | September 5, 2014 - 10:21 AM |
Tagged: X99-Deluxe, SSD 730, Intel, Haswell-E, ddr4, asus, 5960X

Okay, I'll be the first to admit that I didn't know what I was getting into. When a couple of packages showed up at our office from Intel with claims that they wanted to showcase the new Haswell-E platform...I was confused. The setup was simple: turn on cameras and watch what happens.

So out of the box comes...a containment chamber. A carefully crafted, wood+paint concoction that includes lights, beeps, motors and platforms. 

Want to see how Intel promotes the Core i7-5960X and X99 platform? Check out this video below.

Our reviews of products included in this video: