AMD CES 2014 Presentation: Kaveri Goes Official

Subject: Processors | January 7, 2014 - 01:52 AM |
Tagged: amd, CES, 2014, Kaveri, A10 7850K, A10 7700K, APU, firepro, hsa

This year’s AMD CES was actually more interesting than I was expecting.  The details of the event were well known, as most Kaveri details have been revealed over the past few months.  I was unsure what Lisa Su and the gang would go over, but it was actually more interesting than I was expecting.

kav01.jpg

This past year has been a big one for AMD.  They seem to be doing a lot better than others expected them to, especially with all of the delayed product launches on the CPU side for quite a few years.  This year saw the APU take a pretty prominent place in the industry with the launch of the latest generation consoles from Sony and Microsoft.  AMD made inroads with mobile form factors with a variety of APUs.  The HSA Foundation members have grown and HSA members ship two out of every three connected, smart devices.  Apple also includes Firepro graphics cards with all of their new Mac Pros.

Kaveri is of course the big news here.  AMD feels that this is the best APU yet.  The combination of Steamroller CPU cores, GCN graphics compute cores, HSA, hUMA, HQ, TrueAudio, Mantle support, PCI-E 3.0 support, and a configurable TDP makes for a pretty compelling product.  AMD has shuffled some nomenclature about by saying that Kaveri, at the top end, is comprised of 12 compute cores.  These include 4 Steamroller cores and 8 GCN compute clusters.  Each compute cluster matches the historical definition of a core, but of course it looks quite a bit different than a traditional x86 core.

kav02.jpg

We have gone over Kaveri pretty extensively in the past.  The CPU is clocked at 3.7 GHz with a 4 GHz boost.  The graphics portion clocks in at 720 MHz.  It can support up to DDR-3 2400 MHz memory, which is really needed to extract as much performance out of this new APU.  Benchmarks provided by AMD show this product to be a big jump from the previous Richland, and in these particular benchmarks are quite a bit faster than the competing i5 4670K.

Gaming performance is also improved.  This APU can run most current applications at 1080P resolutions with low to medium quality settings.  Older titles can be run at 1080P with Medium to High/Extreme settings.  While this processor is rated at around 867 GFLOPS, which is around 110 GFLOPS greater than the previous top end Richland, it is more efficient at delivering that theoretical performance.  It looks to be a significant improvement all around.

kav03.jpg

Software support is improving with applications from companies like Adobe, The Document Foundation, and Nuance.  These cover HSA applications and in Nuance’s case, using the TrueAudio portion to clean up and accelerate voice recognition.  TrueAudio is also being supported in five upcoming games.  This is not a huge amount, but it is a decent start for this new technology.

Mantle is gaining a lot more momentum with support from 3 engines, 5 developers, and 20+ games in development.  They showed off Battlefied 4 running Mantle on a Kaveri APU for the first time publicly.  They mentioned that it ran 45% faster than Direct3D at the same quality levels on the same hardware.  The display showed frame rates up in the low 50 fps area.

kav04.jpg

AMD is continuing to move forward on their low power offerings based on Beema and Mullins.  Lisa claims that these parts are outperforming the Intel Baytrail offerings in both CPU performance and graphics.  Unfortunately, she mentioned noting about the power consumption associated with these results.  They showed off the Discovery tablet as well as a fully functional PC that was the size of a large cellphone.

They closed up the even by talking about the Surround House 2.  This demo looks significantly better than the previous iteration we saw last year.  This features something like a 34.2 speaker setup in a projected dome.  It is much more complex than the House from last year, but the hardware running it all is rather common.  A single high end Firepro card running on a single A10 7850K.  The demo is also one of the first shows of a 360 degree gesture recognition setup.

kav05.jpg

AMD has come a long way since hitting rock bottom a few years back.  They continue to claw their way back to relevance, and they hope that Kaveri will help them regain a foothold in the computing market.  They are certainly doing well in the graphics market, but the introduction of Kaveri should help them gain more momentum in the CPU/APU market.  We have yet to test Kaveri on our own, but initial results look promising.  It is a better APU, but we just don’t know how much better so far.

Coverage of CES 2014 is brought to you by AMD!

PC Perspective's CES 2014 coverage is sponsored by AMD.

Follow all of our coverage of the show at http://pcper.com/ces!

 

Source: AMD

CES 2014: NVIDIA Announces Tegra K1 SoC with 192 Kepler CUDA Cores, Denver ARMv8 Option

Subject: Processors, Mobile | January 5, 2014 - 08:43 PM |
Tagged: tegra k1, tegra, SoC, nvidia, kepler, CES 2014, CES

Update: Check out our more in-depth analysis of the Tegra K1 processor from NVIDIA.

Today during its CES 2014 press conference, NVIDIA announced the Tegra K1 SoC as the successor to the Tegra 4 processor.  This new ARM-based part includes 192 Kepler-based CUDA cores, sharing the same GPU architecture as the current GeForce GTX 700-series discrete graphics cards. 

k1-chip.jpg

NVIDIA also announced the Epic has Unreal Engine 4 up and running on the Tegra K1, bringing an entirely new class of games to mobile Android devices.  We got to see some demonstrations from NVIDIA running on the K1 and I must admit the visuals were stunning.  Frame rates did get a bit choppy during the subway demo of UE4 but it's still early.

As an added surprise, NVIDIA is announcing a version of Tegra K1 that ships with the same quad-core A15 (4+1) design as the Tegra 4 BUT ALSO have a version that uses two NVIDIA Denver CPU cores!!  Denver is NVIDIA's custom CPU design based on the ARMv8 architecture, adding 64-bit support to another ARM partner's portfolio.

denver3.jpg

Tegra K1 is offered in two pin-to-pin compatible versions - a 32-bit quad-core (4-Plus-1 ARM Cortex-A15 CPU) and a custom, NVIDIA-designed 64-bit dual Super Core CPU. This CPU (codenamed “Project Denver”) delivers very high single-thread and multi-thread performance. Both versions deliver stunning graphics and visual computing capabilities powered by the 192-core NVIDIA Kepler GPU. 

NVIDIA has only had Denver back for a few days from the fab but there able to showcase it running Android.  It's been a long time since the initial announcement of this project and its great to finally see a result.

dieshot.jpg

Tegra K1 with quad-core A15 processor

We'll have an in-depth story on the Tegra K1 on Monday morning, 6am PST right here on PC Perspective so check back then!!

Coverage of CES 2014 is brought to you by AMD!

PC Perspective's CES 2014 coverage is sponsored by AMD.

Follow all of our coverage of the show at http://pcper.com/ces!

Hardcoreware Reviews Intel Core i3-4340

Subject: General Tech, Graphics Cards, Processors | December 19, 2013 - 01:05 AM |
Tagged: Intel, haswell

In another review from around the net, Carl Nelson over at Hardcoreware tested the dual-core (4 threads) Intel Core i3-4340 based on the Haswell architecture. This processor slides into the $157 retail price point with a maximum frequency of 3.6GHz and an Intel HD 4600 iGPU clocked at 1150MHz. Obviously this is not intended as top-end performance but, of course, not everyone wants that.

hcw-core-i3-4340-review.jpg

Image Credit: Hardcoreware

One page which I found particularly interesting was the one which benchmarked Battlefield 4 rendering on the iGPU. The AMD A10 6790K (~$130) had slightly lower 99th percentile frame time (characteristic of higher performance) but slightly lower average frames per second (characteristic of lower performance). The graph of frame times shows that AMD is much more consistent than Intel. Perhaps the big blue needs a little Fame Rating? I would be curious to see what is causing the pretty noticeable (in the graph, at least) stutter. AMD's frame pacing seems to be very consistent albeit this is obviously not a Crossfire scenario.

If you are in the low-to-mid $100 price point be sure to check out his review. Also, of course, Kaveri should be coming next month so that is something to look out for.

Source: Hardcoreware

Intel Broadwell-EP Xeon E5 v4 Because Why Not?

Subject: General Tech, Processors | December 16, 2013 - 06:17 PM |
Tagged: Intel, Haswell-EP, Broadwell-EP, Broadwell

Intel has made its way on to our news feed several times over the last few days. The ticking and the tocking seem to be back on schedule. Was Intel held back by the complexity of 14nm? Was it too difficult for them to focus on both high-performance and mobile development? Was it a mix of both?

VR-Zone, who knows how to get a hold of Intel slides, just leaked details about Broadwell-EP. This product line is predicted to replace Haswell-EP at some point in the summer of 2015 (they expect right around Intel Developer Forum). They claim it will be Intel's first 14nm Xeon processor which obviously suggests that it will not be preceded by Broadwell in the lower performance server categories.

intel-broadwellep.png

Image Credit: VR-Zone

Broadwell-EP will have up to 18 cores per socket (Hyper-Threading allows up to 36 threads). Its top level cache, which we assume is L3, will be up to 45MB large. TDPs will be the same as Haswell-EP which range from 70W to 145W for server parts and from 70W to 160W for workstations. The current parts based on Ivy Bridge, as far as I can tell, peak at 150W and 25MB of cache. Intel will apparently allow Haswell and Broadwell to give off a little more heat than their predecessors. This could be a very good sign for performance.

VR-Zone expects that a dual-socket Broadwell-EP Xeon system could support up to 2TB of DDR4 memory. They expect close to 1 TFLOP per socket of double precision FP performance. This meets or exceeds the performance available by Kaveri including its GPU. Sure, the AMD solution will be available over a year earlier and cost a fraction of the multi-thousand-dollar server processor, but it is somewhat ridiculous to think that a CPU has the theoretical performance available to software render the equivalent of Battlefield 4's medium settings without a GPU (if the software was written with said rendering engine, which it is not... of course).

This is obviously two generations off as we have just received the much anticipated Ivy Bridge-E. Still, it is good to see that Intel is keeping themselves moving ahead and developing new top-end performance parts for enthusiasts and high-end servers.

Source: VR-Zone

Google to Develop CPUs (For Themselves)?

Subject: General Tech, Processors | December 15, 2013 - 01:27 AM |
Tagged: Intel, google, arm

Amazon, Facebook, and Google are three members of a fairly exclusive club. These three companies order custom server processors from Intel (and other companies). Jason Waxman of Intel was quoted by Wired, "Sometimes OEMs and end customers ask us to put a feature into the silicon and it sort of depends upon how big a deal it is and whether it has to be invisible or proprietary to a customer. We're always happy to, if we can find a way to get it into the silicon".

Google.png

Now, it would seem, that Google is interested in developing their own server processors based on architecture licensed from ARM. This could be a big deal for Intel as Bloomberg believes Google accounts for a whole 4.3% of the chip giant's revenue.

Ouch.

Of course this probably does not mean Google will spring up a fabrication lab somewhere. That would just be nutty. It is still unclear whether they will cut in ARM design houses, such as AMD or Qualcomm, or whether they will take ARM's design and run straight to TSMC, GlobalFoundries, or IBM with it.

I am sure there would be many takers for some sizable fraction of 4.3% of Intel's revenue.

Source: Bloomberg

Intel Broadwell to Reach 3.5W and Other Details!

Subject: General Tech, Processors, Mobile | December 14, 2013 - 01:07 AM |
Tagged: Intel, Broadwell

This leak is from China DIY and, thus, machine-translated into English from Chinese. They claim that Broadwell is coming in the second half of 2014 and will be introduced in three four series:

  • H will be the high performance offerings
  • U and Y have very low power consumption
  • M will fit mainstream performance

The high performance offerings will have up to four CPU cores, 6MB of L3 cache, support for up to 32GB of memory, and thermal rating of 47W. The leak claims that some will be configurable down to 37W which is pretty clearly its "SDP" rating. The problem, of course, is whether 47W is its actual TDP or, rather, another SDP rating. Who knows.

Intel-logo.svg_.png

The H series is said to be available in either one or two chips.  Both a separate PCH and CPU version will exist as well as a single-chip solution that integrates the PCH on-die.

There is basically nothing said about the M series beyond acknowledging its existence.

The U and Y series will be up to dual-core with 4MB L3 cache. The U series will have a thermal rating of 15W to 28W. The Y series will be substantially lower at 4.5W configurable down to 3.5W. No clue about which of these numbers are TDPs and which are SDPs. You can compare this earlier reports that Haswell will reach as low as 4.5W SDP.

Hopefully we will learn more about these soon and, perhaps, get a functional timeline of Intel releases. Seriously, I think I need to sit down and draw a flowchart some day.

Source: China DIY

TSMC Begins 16nm FinFET-based 3D Chip Production

Subject: General Tech, Processors | December 14, 2013 - 12:08 AM |
Tagged: TSMC, process node, 16nm

Taiwan Semiconductor (TSMC) is one of the few chip fabrication companies in the world (especially when you omit the memory producers, etc.). Their customers include: AMD, NVIDIA, Qualcomm, Broadcom, and even a few Intel Atom processors have come out of their lines at one point. They will take money from just about anyone who wants a chip.

tsmc.jpg

According to Bit-Tech, a few customers will even have access to 16nm before the end of the year.

The catch, which of course there is one, is that production runs will be very small. We would love to see a gigantic run of new AMD or NVIDIA GPUs based on 16nm but that will not be the case (and not just because Volcanic Islands and Maxwell are both 2Xnm products). The first customers, while otherwise anonymous, will be interested in mobile systems-on-a-chip (SoCs).

On the plus side, when future 1Xnm designs come out, TSMC's production could be reasonably caught up to make a smooth launch.

Intel, the current leader in the fabrication world, targeted a slightly smaller 14nm process and have already begun producing a few odds and ends at that level. Full production has not even really started yet.

Just so you can get an idea of the complexity we are dealing with: 16nm fabrication creates details that are just ~32 atoms in width.

Source: Bit-Tech

AMD Seattle: 64-bit ARM for the Data Center in 2014

Subject: General Tech, Processors | December 13, 2013 - 10:55 PM |
Tagged: opteron, arm, amd

The ARMv8 architecture extends the hardware platform to 64-bit. This increase is mostly useful to address massive amounts of memory but can also have other benefits for performance. I think many of us remember the excitement prior to x86-64 and the subsequent let-down when we realized that, for most applications, typical vector extensions kept up in performance especially considering the compatibility issues of the day. It needed to happen but it was a hard sell until... it was just ubiquitous.

amd-server-roadmap-2014.jpg

AMD has not kept it secret that they are developing 64-bit ARM processors for data centers but, until this week, further details were scarce. Under the codename, "Seattle", these processors will be available in four and eight cores. The Opteron branding will expand beyond x86 to include these new processors. The pitch to enterprises is simple: want both ARM and x86? Why bother with two vendors!

Seattle will also support up to 128GB of ECC memory and 10 Gigabit Ethernet for dense, but power efficient, compute clusters. It will be manufactured on the 28nm process.

The majority of AMD's blog post proclaimed its commitment to software support and it is definitely true that they hold a very high status in both the Linux and Apache Foundations. ARMv8 is supported in Linux starting with kernel 3.7.

Seattle is expected to launch in the second half of 2014.

Source: AMD

A Few More Haswell Refresh (2014) Details

Subject: General Tech, Processors | December 13, 2013 - 05:49 PM |
Tagged: Intel, haswell

Intel will begin to refresh their Haswell line of processors, according to VR-Zone, starting in Q2 and continue into Q3. This will be accompanied by their 9-series of motherboard chipsets. The Intel Core i7-4770 and Core i7-4771 will be replaced, not just surpassed, by the Core i7-4790. That said, the only difference is a 100MHz bump to both the base and turbo CPU frequencies.

Intel-Haswell-01.jpg

The K-series processors will come in Q3 and are said to be based on Haswell-E with DDR4 memory. I find this quite confusing because of previous reports that Broadwell-K would appear at roughly the same time. I am unsure what this means for Broadwell-K and I am definitely unsure why some Haswell-E components would be considered part of the Haswell refresh instead of the Haswell-E launch.

My gut instinct believes that VR-Zone is simply confused or that Microsoft and Google Translate are both terrible at understanding this article.

Source: VR-Zone

(HCW) AMD A10-6790K APU Review and Benchmarks

Subject: General Tech, Processors | December 10, 2013 - 03:56 PM |
Tagged: Richland, amd

AMD has been heavily promoting their Kaveri platform leading up to its January launch. This new generation of parts should slowly replace Richland with faster and HSA-compliant silicon. AMD added a new member of the Richland family on October 29th, however, called the A10-6790K. With a base frequency of 4.1 GHz (turbo to 4.3 GHz) and 384 shader cores clocked at 844 MHz, it has a maximum theoretical compute power of 779 GFLOPs.

hcw-battlefield-4-frametimes-620x418.png

Image Credit: HCW

Carl Nelson of Hardcoreware (HCW) picked one of these APUs up and tested it against a number of metrics (including OpenCL performance) and four similarly priced competitors. Specifically, he found Battlefield 4 playable on low (~35 FPS) at 720p without a discrete graphics solution especially for a home theater PC (HTPC).

Even though better things are on the horizon, you may want to check out his review if only as comparison to what will arrive next month. Who knows, maybe this fits your $120-130 price point.

Source: Hardcoreware