Author:
Subject: Processors
Manufacturer: AMD

Bristol Ridge Takes on Mobile: E2 Through FX

It is no secret that AMD has faced an uphill battle since the release of the original Core 2 processors from Intel.  While stayed mostly competitive through the Phenom II years, they hit some major performance issues when moving to the Bulldozer architecture.  While on paper the idea of Chip Multi-Threading sounded fantastic, AMD was never able to get the per thread performance up to expectations.  While their CPUs performed well in heavily multi-threaded applications, they just were never seen in as positive of a light as the competing Intel products.

br_01.png

The other part of the performance equation that has hammered AMD is the lack of a new process node that would allow it to more adequately compete with Intel.  When AMD was at 32 nm PD-SOI, Intel had introduced its 22nm TriGate/FinFET.  AMD then transitioned to a 28nm HKMG planar process that was more size optimized than 32nm, but did not drastically improve upon power and transistor switching performance.

So AMD had a double whammy on their hands with an underperforming architecture and limitted to no access to advanced process nodes that would actually improve their power and speed situation.  They could not force their foundry partners to spend billions on a crash course in FinFET technology to bring that to market faster, so they had to iterate and innovate on their designs.

br_02.png

Bristol Ridge is the fruit of that particular labor.  It is also the end point to the architecture that was introduced with Bulldozer way back in 2011.

Click here to read the entire introduction of AMD's Bristol Ridge lineup!

Author:
Subject: Processors
Manufacturer: Intel

Broadwell-E Platform

It has been nearly two years since the release of the Haswell-E platform, which began with the launch of the Core i7-5960X processor. Back then, the introduction of an 8-core consumer processor was the primary selling point; along with the new X99 chipset and DDR4 memory support. At the time, I heralded the processor as “easily the fastest consumer processor we have ever had in our hands” and “nearly impossible to beat.” So what has changed over the course of 24 months?

01.jpg

Today Intel is launching Broadwell-E, the follow up to Haswell-E, and things look very much the same as they did before. There are definitely a couple of changes worth noting and discussing, including the move to a 10-core processor option as well as Turbo Boost Max Technology 3.0, which is significantly more interesting than its marketing name implies. Intel is sticking with the X99 platform (good for users that might want to upgrade), though the cost of these new processors is more than slightly disappointing based on trends elsewhere in the market.

This review of the new Core i7-6950X 10-core Broadwell-E processor is going to be quick, and to the point: what changes, what is the performance, how does it overclock, and what will it cost you?

Go.

Continue reading our review of the new Core i7-6950X 10-core processor!!

Report: AMD Socket AM4 Compatible with Existing AM2/AM3 Coolers

Subject: Cases and Cooling, Processors | May 25, 2016 - 12:54 PM |
Tagged: Zen, socket AM3, cpu cooler, amd, AM4

Upgrading to the upcoming Zen processors won't require the purchase of a new cooler or adapter, according to a report from Computer Base (German language).

amd_wraith.jpg

The AMD Wraith Cooler (image credit: The Tech Report)

Answering a customer question on Facebook, a Thermalright representative responded (translated):

"For all AMD fans, we have good news. As we advance AMD has assured the new AM4 processors and motherboards are put on the usual base-fixing, which is standard for AM2. To follow all the Thermalright coolers are used on the Zen processors without additional accessories!"

This news is hardly surprising considering AMD has used the same format for some time, much as Intel's current CPUs still work with coolers designed for LGA 1156.

Author:
Subject: Processors
Manufacturer: ARM

10nm Sooner Than Expected?

It seems only yesterday that we had the first major GPU released on 16nm FF+ and now we are talking about ARM about to receive their first 10nm FF test chips!  Well, in fact it was yesterday that NVIDIA formally released performance figures on the latest GeForce GTX 1080 which is based on TSMC’s 16nm FF+ process technology.  Currently TSMC is going full bore on their latest process node and producing the fastest current graphics chip around.  It has taken the foundry industry as a whole a lot longer to develop FinFET technology than expected, but now that they have that piece of the puzzle seemingly mastered they are moving to a new process node at an accelerated rate.

arm_td01.png

TSMC’s 10nm FF is not well understood by press and analysts yet, but we gather that it is more of a marketing term than a true drop to 10 nm features.  Intel has yet to get past 14nm and does not expect 10 nm production until well into next year.  TSMC is promising their version in the second half of 2016.  We cannot assume that TSMC’s version will match what Intel will be doing in terms of geometries and electrical characteristics, but we do know that it is a step past TSMC’s 16nm FF products.  Lithography will likely get a boost with triple patterning exposure.  My guess is that the back end will also move away from the “20nm metal” stages that we see with 16nm.  All in all, it should be an improved product from what we see with 16nm, but time will tell if it can match the performance and density of competing lines that bear the 10nm name from Intel, Samsung, and GLOBALFOUNDRIES.

ARM has a history of porting their architectures to new process nodes, but they are being a bit more aggressive here than we have seen in the past.  It used to be that ARM would announce a new core or technology, and it would take up to two years to be introduced into the market.  Now we are seeing technology announcements and actual products hitting the scenes about nine months later.  With the mobile market continuing to grow we expect to see products quicker to market still.

arm_td02.png

The company designed a simplified test chip to tape out and send to TSMC for test production on the aforementioned 10nm FF process.  The chip was taped out in December, 2015.  The design was shipped to TSMC for mask production and wafer starts.  ARM is expecting the finished wafers to arrive this month.

Click here to continue reading about ARM's test foray into 10nm!

Rumor: Apple's A11 SoC Reaches Tapeout at TSMC 10nm

Subject: Processors, Mobile | May 9, 2016 - 01:42 PM |
Tagged: apple, a11, 10nm, TSMC

Before I begin, the report comes from DigiTimes and they cite anonymous sources for this story. As always, a grain of salt is required when dealing with this level of alleged leak.

apple.png

That out of the way, rumor has it that Apple's A11 SoC has been taped out on TSMC's 10nm process node. This is still a little way's away from production, however. From here, TSMC should be providing samples of the now finalized chip in Q1 2017, start production a few months later, and land in iOS devices somewhere in Q3/Q4. Knowing Apple, that will probably align with their usual release schedule -- around September.

DigiTimes also reports that Apple will likely make their split-production idea a recurring habit. Currently, the A9 processor is fabricated at TSMC and Samsung on two different process nodes (16nm for TSMC and 14nm for Samsung). They claim that two-thirds of A11 chips will come from TSMC.

Source: DigiTimes

Kaby Lake Benchmarks Might Have Been Leaked

Subject: Processors | May 9, 2016 - 12:51 PM |
Tagged: kaby lake, Intel

Fudzilla claims that they have a screenshot of SiSoft benchmarks belonging to the Intel Core i7-7700k. I should note that image only mentions “Kabylake,” not any specific model number. It's possible that the branding will change this generation, and there's an infinitesimal chance that this is not highest level SKU of that specific chip, but it should be safe to assume that this is the 7700k, and that it will be branded as such. I'm just being over-cautious.

intel-2016-7700k-fudzilla.jpg

Image Credit: Fudzilla

In terms of specifications, Kaby Lake will be a quad-core processor that runs at 3.6 GHz, 4.2 GHz turbo, backed with 8MB of L3 cache. The graphics processor has 24 CUs that can reach a clock of 1.15 GHz. If Intel hasn't changed the GPU architecture since Skylake, this equates to 192 FP32 processors and 442 GFLOPs. Apart from a lower CPU base clock, 3.6 GHz versus Skylake's 4.0 GHz, Kaby Lake seems to be identical to Skylake.

I was hoping to compare the benchmark results with Core i7-6700k, but I'm not sure which version of SiSoft they're using. The numbers don't seem to line up with our results (SiSoft 2013 SP3a) or the SiSoft 2015 benchmarks that I've found around the net (and even those 2015 benchmarks varied greatly). It might just be my lack of experience with CPU benchmarks, but I'd rather just present the data.

Source: Fudzilla

Speaking of Leaked Benchmarks: Broadwell-E

Subject: Processors | May 5, 2016 - 03:26 PM |
Tagged: Intel, Broadwell-E

NVIDIA is not the only one with leaked benchmarks this week -- it's Intel's turn!

Silicon Lottery down at the Overclock.net forums got their hands on the ten-core, twenty-thread, Intel Core i7-6950X. Because Silicon Lottery is all about buying CPUs, testing how they overclock, and reselling them, it looks like each of these results are overclocked. The base clock is listed as 3.0 GHz, but the tests were performed at 4.0 GHz or higher.

intel-2016-siliconlottery-broadwelle-oc.png

Image Credit: Silicon Lottery via Overclock.net

They only had access to a single CPU, but they were able to get a “24/7” stable overclock at 4.3 GHz, pushed to 4.5 GHz for a benchmark or two. This could vary from part to part, as this all depends on microscopic errors that were made during manufacturing, and bigger chips have more surface area to run into them. These tiny imprecisions can require excess voltage to hit higher frequencies, causing a performance variation between parts. Too much, and the manufacturer will laser-cut under-performing cores, if possible, and sell it as a lesser part. That said, Silicon Lottery said that performance ran into a wall at some point, which sounds like an architectural limitation.

Broadwell-E is expected to launch at Computex.

Author:
Subject: Processors
Manufacturer: AMD

Lower Power, Same Performance

AMD is in a strange position in that there is a lot of excitement about their upcoming Zen architecture, but we are still many months away from that introduction.  AMD obviously needs to keep the dollars flowing in, and part of that means that we get refreshes now and then of current products.  The “Kaveri” products that have been powering the latest APUs from AMD have received one of those refreshes.  AMD has done some redesigning of the chip and tweaked the process technology used to manufacture them.  The resulting product is the “Godavari” refresh that offers slightly higher clockspeeds as well as better overall power efficiency as compared to the previous “Kaveri” products.

7860K_01.jpg

One of the first refreshes was the A8-7670K that hit the ground in November of 2015.  This is a slightly cut down part that features 6 GPU compute units vs. the 8 that a fully enabled Godavari chip has.  This continues to be a FM2+ based chip with a 95 watt TDP.  The clockspeed of this part goes from 3.6 GHz to 3.9 GHz.  The GPU portion runs at the same 757 MHz that the original A10-7850K ran at.  It is interesting to note that it is still a 95 watt TDP part with essentially the same clockspeeds as the 7850K, but with two fewer GPU compute units.

The other product being covered here is a bit more interesting.  The A10-7860K looks to be a larger improvement from the previous 7850K in terms of power and performance.  It shares the same CPU clockspeed range as the 7850K (3.6 GHz to 3.9 GHz), but improves upon the GPU clockspeed by hitting around 800 MHz.  At first this seems underwhelming until we realize that AMD has lowered the TDP from 95 watts down to 65 watts.  Less power consumed and less heat produced for the same performance from the CPU side and improved performance from the GPU seems like a nice advance.

amd_cool_stack.png

AMD continues to utilize GLOBALFOUNDRIES 28 nm Bulk/HKMG process for their latest APUs and will continue to do so until Zen is released late this year.  This is not the same 28 nm process that we were introduced to over four years ago.  Over that time improvements have been made to improve yields and bins, as well as optimize power and clockspeed.  GF also can adjust the process on a per batch basis to improve certain aspects of a design (higher speed, more leakage, lower power, etc.).  They cannot produce miracles though.  Do not expect 22 nm FinFET performance or density with these latest AMD products.  Those kinds of improvements will show up with Samsung/GF’s 14nm LPP and TSMC’s 16nm FF+ lines.  While AMD will be introducing GPUs on 14nm LPP this summer, the Zen launch in late 2016 will be the first AMD CPU to utilize that advanced process.

Click here to read the entire AMD A10-7860K and A10-7670K Review!

Gaming at the low end, checking out the Athlon X4 880K

Subject: Processors | April 26, 2016 - 05:32 PM |
Tagged: Wraith, Godavari, GLOBALFOUNDRIES, FM2+, amd, X4 880K

Remember that FM2+ refresh which Josh informed you about back in March?  The APUs have started arriving on test benches and can be benchmarked independently to see what this ~$100 processor and the Wraith cooler are capable of.  Neoseeker compares the new 880K against the older FX-4350 in a long series of benchmarks which show the 880K to be the better part in most cases.  There are some interesting exceptions to this, in which the FX-4350's slightly higher frequency allows it to pull ahead by a small margin so there are cases where the less expensive chip would make sense.  Read the full review to see which chip makes more sense for you.

01x.jpg

"Today we take a look at the AMD Athlon X4 880K, a quad-core FM2+ processor with 4.0/4.2GHz base/Turbo clocks and unlocked multiplier priced at under $100 USD. It's designed for enthusiasts on a budget looking for the fastest multi-core Athlon processor yet without any integrated GPU to add to the cost. It even shares the 95W TDP of AMD's higher-end APUs for optimized power consumption that further leads to more overclocking headroom."

Here are some more Processor articles from around the web:

Processors

Source: Neoseeker

AMD Expands Wraith Air Cooler Lineup With More CPUs

Subject: Cases and Cooling, Processors | April 22, 2016 - 11:36 AM |
Tagged: Wraith, quiet computing, heatsink, cpu cooler, cpu, AMD Wraith, amd, air cooling

AMD has expanded the CPU lineup featuring their high-performance Wraith air cooling solution, with the quiet cooler now being offered with two more FX-series processors.

amd_wraith.jpg

Image credit: The Tech Report

"AMD has heard the feedback from reviewers and PC users everywhere: the near-silent, capable AMD Wraith Cooler is a resounding success. The question they keep asking is, 'When will the Wraith Cooler be available on more AMD Processors?'

We’re pleased to announce that the wait is over. The high-performance AMD FX 8350 and AMD FX 6350 processors now include a true premium thermal solution in the AMD Wraith Cooler, and each continues to deliver the most cores andthe highest clock rates in its class."

8350-FX.jpg

The lineup featuring AMD's most powerful air solution now includes the following products:

  • AMD FX 8370
  • AMD FX 8350
  • AMD FX 6350
  • AMD A10-7890K

The Wraith cooler initially made its debut with the FX-8370 CPU, and was added to the new A10-7890K APU with the FM2+ refresh last month.

Source: AMD