AMD Kabini Chips Now Available At Retail

Subject: Processors | April 10, 2014 - 04:38 PM |
Tagged: sempron, Kabini, Athlon 5350, athlon, amd, AM1

AMD has officially announced its socketed Kabini chips and the AM1 platform. Information on the chips and motherboards have been slowly trickling out since CES, but now they are finally official and available for purchase at retail.

Specifically, AMD has launched four desktop Kabini processors under the Athlon and Sempron brands. In addition ASRock, ASUS, Biostar, ECS, Gigabyte, and MSI all have AM1 platform motherboards ready to accept the new AMD chips. The motherboards come in mini ITX and micro ATX form factors.

The AMD Athlon 5350 SoC Installed in the ASUS AM1I-A motherboard which was used in our full Kabini review.

All four of the AMD chips have 25W TDPs and integrated GPUs with 128 stream processors. The Kabini chips support four PCI-E 2.0 lanes, two SATA III 6 Gbps ports, two USB 3.0 ports, and eight USB 2.0 ports. Motherboard permitting, the Kabini GPU supports up to three display outputs (HDMI, DisplayPort, and VGA). The chips differ by CPU and GPU clockspeeds, core count, and DDR3 memory frequency support. On the low end, the $34 (MSRP) Sempron 2650 is a dual core part clocked at 1.45 GHz with a GPU clocked that 400 MHz that supports a maximum memory clockspeed of 1333 MHz. The top-end Athlon 5350 is a quad core processor clocked at 2.05 GHz with a GPU clocked at 600 MHz and supports DDR3 1600 MHz. This chips has a $59 MSRP. The desktop chips are similar to their mobile counterparts, with slight differences in clockspeed and (of course) price and the socketed implementation.

Processor TDP CPU L2 Cache GPU Maximum Memory Speed Price
Athlon 5350 25W 4 cores @ 2.05 GHz 2MB 128 SPs @ 600 MHz 1600 MHz $59
Athlon 5150 25W 4 cores @ 1.6 GHz 2MB 128 SPs @ 600 MHz 1600 MHz $49
Sempron 3850 25W 4 cores @ 1.3 GHz 2MB 128 SPs @ 450 MHz 1600 MHz $39
Sempron 2650 25W 2 cores @ 1.45 GHz 1MB 128 SPs @ 400 MHz 1333 MHz $34

The motherboards for the new Kabini processors will come in mini ITX and micro ATX. We previously covered AM1 platform boards from ASRock, Biostar, and MSI. In general, the boards offer up most of the standard IO and other functionality that enthusiasts are used to from existing AMD motherboards including multiple display outputs, networking, audio, and a plethora of USB ports on the rear IO panel and SATA ports, PCI Express slot(s), and two DDR3 DIMM slots internally. Interestingly, the boards are fairly bare and free from chipsets because the IO is included in the processor itself. This enables motherboards that are notably cheaper than, say, FM2+ and AM3 boards.

When AMD first launched the AM1 platform, the company stated that a combination of a Kabini chip and FS1b-socketed motherboard would add up to about $60. Now that the platform is official, retail prices are starting to pop up. With the Kabini processors and motherboards each ranging from around $30 to $60, AMD has technically hit that mark. Adding a hard drive, RAM, and enclosure will get you a baisc and complete system for less than $150.

AMD's Kabini chips are set to compete against Intel's Bay Trail-D processor which comes pre-soldered onto motherboards. The AM1 platform does look to be the slightly cheaper option that also gives users the choice of motherboard and the possibility of upgrading to soecketed Beema (Kabini's successor) SoCs.

If you are interested in desktop Kabini, be sure to check out our full review of the AMD Athlon 5350 at PC Perspective!

Source: Tech Report
Author:
Subject: Processors
Manufacturer: AMD

AMD Brings Kabini to the Desktop

Perhaps we are performing a study of opposites?  Yesterday Ryan posted his R9 295X2 review, which covers the 500 watt, dual GPU monster that will be retailing for $1499.  A card that is meant for only the extreme enthusiast who has plenty of room in their case, plenty of knowledge about their power supply, and plenty of electricity and air conditioning to keep this monster at bay.  The product that I am reviewing could not be any more different.  Inexpensive, cool running, power efficient, and can be fit pretty much anywhere.  These products can almost be viewed as polar opposites.

am1_APU_Comp.jpg

The interesting thing of course is that it shows how flexible AMD’s GCN architecture is.  GCN can efficiently and effectively power the highest performing product in AMD’s graphics portfolio, as well as their lowest power offerings in the APU market.  The performance scales very linearly when it comes to adding in more GCN compute cores.

The product that I am of course referring to are the latest Athlon and Sempron APUs that are based on the Kabini architecture which fuses Jaguar x86 cores with GCN compute cores.  These APUs were announced last month, but we did not have the chance at the time to test them.  Since then these products have popped up in a couple of places around the world, but this is the first time that reviewers have officially received product from AMD and their partners.

Click to read the entire review on AMD's AM1 Platform!

NAB 2014: Intel Iris Pro Support in Adobe Creative Cloud (CC)

Subject: General Tech, Graphics Cards, Processors, Shows and Expos | April 8, 2014 - 03:43 PM |
Tagged: Intel, NAB, NAB 14, iris pro, Adobe, premiere pro, Adobe CC

When Adobe started to GPU-accelerate their applications beyond OpenGL, it started with NVIDIA and its CUDA platform. After some period of time, they started to integrate OpenCL support and bring AMD into the fold. At first, it was limited to a couple of Apple laptops but has since expanded to include several GPUs on both OSX and Windows. Since then, Adobe switched to a subscription-based release system and has published updates on a more rapid schedule. The next update of Adobe Premiere Pro CC will bring OpenCL to Intel Iris Pro iGPUs.

Intel-IrisPro-Adobe-Masking.jpg

Of course, they specifically mentioned Adobe Premiere Pro CC which suggests that Photoshop CC users might be coming later. The press release does suggest that the update will affect both Mac and Windows versions of Adobe Premiere Pro CC, however, so at least platforms will not be divided. Well, that is, if you find a Windows machine with Iris Pro graphics. They do exist...

A release date has not been announced for this software upgrade.

Source: Intel

GDC 2014: Shader-limited Optimization for AMD's GCN

Subject: Editorial, General Tech, Graphics Cards, Processors, Shows and Expos | March 30, 2014 - 01:45 AM |
Tagged: gdc 14, GDC, GCN, amd

While Mantle and DirectX 12 are designed to reduce overhead and keep GPUs loaded, the conversation shifts when you are limited by shader throughput. Modern graphics processors are dominated by sometimes thousands of compute cores. Video drivers are complex packages of software. One of their many tasks is converting your scripts, known as shaders, into machine code for its hardware. If this machine code is efficient, it could mean drastically higher frame rates, especially at extreme resolutions and intense quality settings.

amd-gcn-unit.jpg

Emil Persson of Avalanche Studios, probably known best for the Just Cause franchise, published his slides and speech on optimizing shaders. His talk focuses on AMD's GCN architecture, due to its existence in both console and PC, while bringing up older GPUs for examples. Yes, he has many snippets of GPU assembly code.

AMD's GCN architecture is actually quite interesting, especially dissected as it was in the presentation. It is simpler than its ancestors and much more CPU-like, with resources mapped to memory (and caches of said memory) rather than "slots" (although drivers and APIs often pretend those relics still exist) and with how vectors are mostly treated as collections of scalars, and so forth. Tricks which attempt to combine instructions together into vectors, such as using dot products, can just put irrelevant restrictions on the compiler and optimizer... as it breaks down those vector operations into those very same component-by-component ops that you thought you were avoiding.

Basically, and it makes sense coming from GDC, this talk rarely glosses over points. It goes over execution speed of one individual op compared to another, at various precisions, and which to avoid (protip: integer divide). Also, fused multiply-add is awesome.

I know I learned.

As a final note, this returns to the discussions we had prior to the launch of the next generation consoles. Developers are learning how to make their shader code much more efficient on GCN and that could easily translate to leading PC titles. Especially with DirectX 12 and Mantle, which lightens the CPU-based bottlenecks, learning how to do more work per FLOP addresses the other side. Everyone was looking at Mantle as AMD's play for success through harnessing console mindshare (and in terms of Intel vs AMD, it might help). But honestly, I believe that it will be trends like this presentation which prove more significant... even if behind-the-scenes. Of course developers were always having these discussions, but now console developers will probably be talking about only one architecture - that is a lot of people talking about very few things.

This is not really reducing overhead; this is teaching people how to do more work with less, especially in situations (high resolutions with complex shaders) where the GPU is most relevant.

Taking the A10-7850K out for a spin and leaving marks on the bench

Subject: Processors | March 27, 2014 - 03:44 PM |
Tagged: Kaveri, APU, amd, A10-7850K

It is about time we took a look at AMD's new flagship processor, the A10-7850K Kaveri chip running at 3.7GHz or 4GHz at full boost with 4 Steamroller CPU cores and 8 Hawaii GPU cores.  While we are still shy on HSA benchmarks at the moment, HiTech Legion did have a chance to do some Mantle testing with the APU alone and paired with a discrete GPU which showed off some of the benefits on Mantle.  They also reached a decent overclock, a hair shy of 4.5GHz on air which is not too shabby for a processor that costs under $200.  Check out the full review here.

tech1.jpg

"AMD has launched their fourth generation of APU, codenamed “Kaveri”. Kaveri boasts increased processor power coupled with advanced Radeon graphics but there are other technologies, such as HSA, that balance memory loads via “compute” to both the CPU and GPU."

Here are some more Processor articles from around the web:

Processors

GDC 14: Intel Ready Mode offers low power, always connected desktops

Subject: Processors, Systems | March 19, 2014 - 08:00 PM |
Tagged: ready mode, Intel, gdc 14, GDC

Intel Ready Mode is a new technology that looks to offer some of the features of connected standby for desktop and all-in-one PCs while using new power states of the Haswell architecture to keep power consumption incredibly low.  By combining a 4th Generation Core processor from Intel, a properly implemented motherboard and platform with new Intel or OEM software, users can access the data on their system or push data to their system without "waking up" the machine.

readymode1.jpg

This feature is partially enabled by the C7 state added to the Haswell architecture with the 4th Generation Core processors but could require motherboard and platform providers to update implementations to properly support the incredibly low idle power consumption.  

To be clear, this is not a desktop implementation of Microsoft Instant Go (Connected Standby) but instead is a unique and more flexible implementation.  While MS Instant Go only works on Windows 8 and with Metro applications, Intel Ready Mode will work with Windows 7 and Windows 8 and actually keeps the machine awake and active, just at a very low power level.  This allows users to not only make sure their software is always up to date and ready when they want to use the PC but enabled access to a remote PC from a remote location - all while in this low power state.

How low?  Well Intel has a note on its slide that mentions Fujitsu launched a feature called Low Power Active Mode in 2013 that was able to hit 5 watts when leveraging the Intel guidelines. You can essentially consider this an incredibly low power "awake" state for Intel PCs.

readymode2.jpg
 

Intel offers up some suggested usage models for Ready Mode and I will be interested to see what OEMs integrate support for this technology and if DIY users will be able to take advantage of it as well. Lenovo, ASUS, Acer, ECS, HP and Fujitsu are supporting it this year.

Intel Confirms Haswell-E, 8-core Extreme Edition with DDR4 Memory

Subject: Processors | March 19, 2014 - 08:00 PM |
Tagged: X99, Intel, Haswell-E, gdc 14, GDC, ddr4

While talking with press at GDC in San Francisco today, Intel is pulling out all the stops to assure enthusiasts and gamers that they haven't been forgotten!  Since the initial release of the first Extreme Edition processor in 2003 (Pentium 4), Intel has moved from 1.7 million transistors to over 1.8 BILLION (Ivy Bride-E). Today Intel officially confirms that Haswell-E is coming!

haswelle.jpg

Details are light, but we know now that this latest incarnation of the Extreme Edition processor will be an 8-core design, running on a new Intel X99 chipset and will be the first to support DDR4 memory technology.  I think most of us are going to be very curious about the changes, both in pricing and performance, that the new memory technology will bring to the table for enthusiast and workstation users.

Timing is only listed as the second half of 2014, so we are going to be (impatiently) waiting along with you for more details.

Though based only on leaks that we found last week, the X99 chipset and Haswell-E will continue to have 40 lanes of PCI Express but increases the amount of SATA 6G ports from two to ten (!!) and USB 3.0 ports to six.  

Intel brings Iris Pro Graphics to Broadwell in LGA Sockets

Subject: Processors | March 19, 2014 - 08:00 PM |
Tagged: LGA, iris pro, Intel, gdc 14, GDC, Broadwell

We have great news for you this evening!  The demise of the LGA processor socket for Intel desktop users has been great exaggerated.  During a press session at GDC we learned that not only will Intel be offering LGA based processors for Broadwell upon its release (which we did not get more details on) but that there will be an unlocked SKU with Iris Pro graphics implemented.  

broadwell.jpg

Iris Pro, in its current version, is a high performance version of Intel's processor graphics that includes 128MB of embedded DRAM (eDRAM).  When we first heard that Iris Pro was not coming to the desktop market with an LGA1150 SKU we were confused and bitter but it seems that Intel was listening to feedback.  Broadwell will bring with it the first socketed version of Iris Pro graphics!

It's also nice to know that the rumors surrounding Intel's removal of the socket option for DIY builders was incorrect or possibly diverted due to the reaction. The enthusiast lives on!!

UPDATE: Intel has just confirmed that the upcoming socketed Broadwell CPUs will be compatible with 9-series motherboards that will be released later this spring. This should offer a nice upgrade path for users going into 2015.

Intel Devil's Canyon Offers Haswell with Improved TIM, 9-series Chipsets

Subject: Processors | March 19, 2014 - 08:00 PM |
Tagged: tim, Intel, hawell, gdc 14, GDC, 9-series

An update to the existing Haswell 4th Generation Core processors will be hitting retail sometime in mid-2014 according to what Intel has just told us. This new version of the existing processors will include new CPU packaging and the oft-requested improved thermal interface material (TIM).  Overclockers have frequently claimed that the changes Intel made to the TIM was limiting performance; it seems Intel has listened to the community and will be updating some parts accordingly.

haswellplus.jpg

Recent leaks have indicated we'll see modest frequency increases in some of the K-series parts; in the 100 MHz range.  All Intel is saying today though is what you see on that slide. Overclocks should improve with the new thermal interface material but by how much isn't yet known.

These new processors, under the platform code name of Devil's Canyon, will target the upcoming 9-series chipsets.  When I asked about support for 8-series chipset users, Intel would only say that those motherboards "are not targeted" for the refreshed Haswell CPUs.  I would not be surprised though to see some motherboard manufacturers attempt to find ways to integrate board support through BIOS/UEFI changes.

Though only slight refreshes, when we combine the Haswell Devil's Canyon release with the news about the X99 + Haswell-E, it appears that 2014 is shaping up to be pretty interesting for the enthusiast community!

Intel "Wellsburg" Leaks: Haswell-E's X99 Chipset

Subject: General Tech, Processors, Chipsets | March 13, 2014 - 03:35 AM |
Tagged: Intel, Haswell-E, X99

Though Ivy Bridge-E is not too distant of a memory, Haswell-E is on the horizon. The enthusiast version of Intel's architecture will come with a new motherboard chipset, the X99. (As an aside: what do you think its eventual successor will be called?) WCCFTech got their hands on details, albeit some of which have been kicking around for a few months, outlining the platform.

Intel-X99-Wellsburg-Chipset-635x426.jpg

Image Credit: WCCFTech

First and foremost, Haswell-E (and X99) will support DDR4 memory. Its main benefit is increased bandwidth and decreased voltage at the same current, thus lower wattage. The chipset will support four memory channels.

Haswell-E will continue to have 40 PCIe lanes (the user's choice between five x8 slots or two x16 slots plus a x8 slot). This is the same number of total lanes as seen on Sandy Bridge-E and Ivy Bridge-E. While LGA 2011-3 is not compatible with LGA 2011, it does share that aspect.

X99 does significantly increase the number of SATA ports, to ten SATA 6Gbps (up from two SATA 6Gbps and four SATA 3Gbps). Intel RST, RST Smart Response Technology, and Rapid Recover Technology are also present and accounted for. The chipset also supports six native USB 3.0 ports and an additional eight USB 2.0 ones.

Intel Haswell-E and X99 is expected to launch sometime in Q3 2014.

Source: WCCFTech