Reuters: Intel CEO says Broadwell PCs for sale by holidays

Subject: Processors | May 19, 2014 - 11:13 AM |
Tagged: Intel, Broadwell, z97, krzanich

Apparently attending Maker Faire gets you more than a look at the latest hacked gadgets produced by the community. Reuters got to talk with Intel CEO Brian Krzanich who confirmed that the company's upcoming Broadwell architecture processors using the new 14nm process technology would be on store shelves in time for the holidays.

"I can guarantee for holiday, and not at the last second of holiday," Krzanich said in an interview. "Back to school - that's a tight one. Back to school you have to really have it on-shelf in July, August. That's going to be tough."

broadwell.jpg

Dissecting that comment we can assume that Broadwell will likely be made available in September or October of this year. This becomes the most precise word from the mouth of Intel about the release of these new parts but of course there wasn't much detail to be had. Though "computers" was mentioned he did not specify notebooks, all-in-ones or desktops. And more importantly for our readers, he did not specify anything about the socketed parts we have been promised would run on the newly released Intel Z97 chipset.

Source: Reuters

Xiaomi MiPad Tablet is Tegra K1 Powered

Subject: General Tech, Graphics Cards, Processors, Mobile | May 15, 2014 - 05:02 PM |
Tagged: nvidia, xaiomi, mipad, tegra k1

Tegra K1 is NVIDIA's new mobile processor and this first to implement the Kepler graphics architecture. In other words, it has all of the same graphics functionality as a desktop GPU with 364 GigaFLOPs of performance (a little faster than a GeForce 9600 GT). This is quite fast for a mobile product. For instance, that amount of graphics performance could max out Unreal Tournament 3 to 2560x1600 and run Crysis at 720p. Being Kepler, it supports OpenGL 4.4, OpenGL ES 3.1, DirectX 11 and 12, and GPU compute languages.

Xiaomi is launching their MiPad in Beijing, today, with an 8-inch 2048x1536 screen and the Tegra K1. They will be available in June (for China) starting at $240 USD for the 16GB version and going up to $270 for the 64GB version. Each version has 2GB of RAM, an 8MP rear-facing camera, and a 5MP front camera.

Now, we wait and see if any Tegra K1 devices come to North America and Europe - especially at that price point.

Source: NVIDIA
Author:
Subject: Processors
Manufacturer: AMD

Another Boring Presentation...?

In my old age I am turning into a bit of a skeptic.  It is hard to really blame a guy; we are surrounded by marketing and hype, both from inside companies and from their fans.  When I first started to listen in on AMD’s Core Innovation Update presentation, I was not expecting much.  I figured it would be a rehash of the past year, more talk about Mullins/Beema, and some nice words about some of the upcoming Kaveri mobile products.

I was wrong.

AMD decided to give us a pretty interesting look at what they are hoping to accomplish in the next three years.  It was not all that long ago that AMD was essentially considered road kill, and there was a lot of pessimism that Rory Read and Co. could turn AMD around.  Now after a couple solid years of growth, a laser-like focus on product development based on the IP strengths of the company, and a pretty significant cut of the workforce, we are seeing an AMD that is vastly different from the one that Dirk Meyers was in charge of (or Hector Ruiz for that matter).  Their view for the future takes a pretty significant turn from where AMD was even 8 years ago.  x86 certainly has a future for AMD, but the full-scale adoption of the ARM architecture looks to be what finally differentiates this company from Intel.

Look, I’m Amphibious!

AMD is not amphibious.  They are working on being ambidextrous.  Their goal is not only to develop and sell x86 based processors, but also be a prime moving force in the ARM market.  AMD has survived against a very large, well funded, and aggressive organization for the past 35 years.  They believe their experience here can help them break into, and thrive within, the ARM marketplace.  Their goals are not necessarily to be in every smartphone out there, but they are leveraging the ARM architecture to address high growth markets that have a lot of potential.

amd_01.png

There are really two dominant architectures in the world with ARM and x86.  They power the vast majority of computing devices around the world.  Sure, we still have some Power and MIPS implementations, but they are dwarfed by the combined presence of x86 and ARM in modern devices.  The flexibility of x86 allows it to scale from the extreme mobile up to the highest performing clusters.  ARM also has the ability to scale in performance from handhelds up to the server world, but so far their introduction into servers and HPC solutions has been minimal to non-existent.  This is an area that AMD hopes to change, but it will not happen overnight.  A lot of infrastructure is needed to get ARM into that particular area.  Ask Intel how long it took for x86 to gain a handhold in the lucrative server and workstation markets.

Click here to read the entire article on AMD's Core Technology Update!

AMD Allegedly Preparing New Mobile Kaveri APUs Including the Flagship FX-7600P

Subject: General Tech, Processors | May 11, 2014 - 11:41 PM |
Tagged: ulv, mobile apu, laptop, Kaveri, APU, amd

According to leaked information, AMD will allegedly be releasing mobile versions of its Kaveri APU later this year. There are reportedly seven new processors aimed at laptops and tablet that follow the same basic design as their desktop counterparts: steamroller CPU cores paired with a GCN-based graphics portion and an integrated memory controller.

According to information obtained by WCCF Tech, AMD will release four ULV and three standard voltage parts. All but one APU will have four Steamroller CPU cores paired with an Radeon R4, R5, R6, or R7 graphics processor with up to 512 GCN cores. The mobile APUs allegedly range in TDP from 17W to 35W and support various AMD technologies including TrueAudio, Mantle, and Eyefinity.

An AMD slide showing a die shot of the desktop "Kaveri" Accelerated Processing Unit (APU).

Of the seven rumored APUs, two of them are OEM-only parts that feature the “FX” moniker. The FX-7500 is the fastest ULV (ultra-low voltage) APU while the FX-7600P is AMD’s flagship mobile processor.

The FX-7600P is the chip that should most interest mobile gamers and enthusiasts looking for a powerful AMD-powered laptop or tablet. This processor allegedly features four CPU cores clocked at 2.7GHz base (that turbo to a maximum of 3.6GHz), a GPU with 512 GCN cores clocked at a base of 600MHz and a boost clock of 666MHz. The chip further uses 4MB of L2 cache and is a 35W TDP part. This should be a decent processor for laptops, offering acceptable general performance and some nice mobile gaming with the beefy integrated GPU!

AMD Mobile Kaveri APU Details Leak.png

The leaked AMD mobile Kaveri APU lineup via WCCF Tech.

Of course, for productivity machines where portability and battery life are bigger concerns, AMD will reportedly be offering up the dual core A6-7000. This 17W ULV processor combines two cores clocked at 2.2GHz (3.0GHz boost), a GPU based on the Radeon R4 with 192 GCN cores (494MHz base and 533MHz boost), and 2MB of L2 cache. Compared to the FX-7600P (and especially the desktop parts), the A6-7000 sips power. We will have to wait for reviews to see how it performs, but it will be facing stiff competition from Intel’s Core i3 Haswell CPUs and even the Bay Trail SoCs which come in at a lower TDP and offer higher thread counts. The GPU capabilities and GPGPU / HSA software advancements (such as LibreOffice adding GPGPU support) will make or break the A6-7000, in my opinion.

In all, the leaked mobile chips appear to be a decent upgrade over the previous generation. The new mobile APUs will bring incremental performance and power saving benefits to bear against competition from Intel. I’m looking forward to more official information and seeing what the OEMs are able to do with the new chips.

Source: WCCF Tech

AMD Shows Off ARM-Based Opteron A1100 Server Processor And Reference Motherboard

Subject: Processors | May 8, 2014 - 12:26 AM |
Tagged: TrustZone, server, seattle, PCI-E 3.0, opteron a1100, opteron, linux, Fedora, ddr4, ARMv8, arm, amd, 64-bit

AMD showed off its first ARM-based “Seattle” processor running on a reference platform motherboard at an event in San Francisco earlier this week. The new chip, which began sampling in March, is slated for general availability in Q4 2014. The “Seattle” processor will be officially labeled the AMD Opteron A1100.

During the press event, AMD demonstrated the Opteron A1100 running on a reference design motherboard (the Seattle Development Platform). The hardware was used to drive a LAMP software stack including an ARM optimized version of Linux based on RHEL, Apache 2.4.6, MySQL 5.5.35, and PHP 5.4.16. The server was then used to host a WordPress blog that included stream-able video.

AMD Seattle Development Platform Opteron A1100.jpg

Of course, the hardware itself is the new and interesting bit and thanks to the event we now have quite a few details to share.

The Opteron A1100 features eight ARM Cortex-A57 cores clocked at 2.0 GHz (or higher). AMD has further packed in an integrated memory controller, TrustZone encryption hardware, and floating point and NEON video acceleration hardware. Like a true SoC, the Opteron A1100 supports 8 lanes of PCI-E 3.0, eight SATA III 6Gbps ports, and two 10GbE network connections.

The Seattle processor has a total of 4MB of L2 cache (each pair of cores shares 1MB of L2) and 8MB L3 cache that all eight cores share. The integrated memory controller supports DDR3 and DDR4 memory in SO-DIMM, unbuffered DIMM, and registered ECC RDIMM forms (only one type per motherboard) enabling the ARM-based platform to be used in a wide range of server environments (enterprise, SMB, and home servers et al).

AMD has stated that the upcoming Opteron A1100 processor delivers between two and four times the performance of the existing Opteron X series (which uses four x86 Jaguar cores clocked at 1.9 GHz). The A1100 has a 25W TDP and is manufactured by Global Foundries. Despite the slight increase in TDP versus the Opteron X series (the Opteron X2150 is a 22W part), AMD claims the increased performance results in notable improvements in compute/watt performance.

AMD Opteron Server Processor.png

AMD has engineered a reference motherboard though partners will also be able to provide customized solutions. The combination of reference motherboard and ARM-based Opteron A1100 is known at the Seattle Development Platform. This reference motherboard features four registered DDR3 DIMM slots for up to 128GB of memory, eight SATA 6Gbps ports, support for standard ATX power supplies, and multiple PCI-E connectors that can be configured to run as a single PCI-E 3.0 x8 slot or two PCI-E 3.0 x4 slots.

The Opteron A1100 is an interesting move from AMD that will target low power servers. the ARM-based server chip has an uphill battle in challenging x86-64 in this space, but the SoC does have several advantages in terms of compute performance per watt and overall cost. AMD has taken the SoC elements (integrated IO, memory, companion processor hardware) of the Opteron X series and its APUs in general, removed the graphics portion, and crammed in as many low power 64-bit ARM cores as possible. This configuration will have advantages over the Opteron X CPU+GPU APU when running applications that use multiple serial threads and can take advantage of large amounts of memory per node (up to 128GB). The A1100 should excel in serving up files and web pages or acting as a caching server where data can be held in memory for fast access.

I am looking forward to the launch as the 64-bit ARM architecture makes its first major inroads into the server market. The benchmarks, and ultimately software stack support, will determine how well it is received and if it ends up being a successful product for AMD, but at the very least it keeps Intel on its toes and offers up an alternative and competitive option.

Source: Tech Report

Also at Intel and Google's Chrome OS Event: Human Rights

Subject: General Tech, Processors | May 7, 2014 - 03:06 AM |
Tagged: conflict-free, Intel, Congo

The Intel and Google keynote speech closed out with a video and an announcement. Each Chrome OS device that they mentioned will be among the first to use Haswell and Bay Trail processors manufactured with conflict-free minerals. They are not abandoning the Democratic Republic of the Congo, rather they seem to be forcing their suppliers to adhere to human rights standards if they want to do business with Intel.

This initiative has apparently led to the creation of the "Conflict-Free Smelter Program" which is run by the Conflict-Free Sourcing Initiative. This industry body includes several other companies, such as AMD, Apple, Foxconn, IBM, Microsoft, NVIDIA, Pegatron, Qualcomm, every laptop manufacturer that I could think of, and over 150 others.

Intel has been discussing this for a little while, and taking positive steps toward this goal along the way. There really is not that many other ways to say it: reducing the suffering in the world is a great goal.

Source: Intel

Intel Leaks: Skylake and 100-Series Chipsets Expected 2015

Subject: General Tech, Processors | May 6, 2014 - 03:19 AM |
Tagged: Skylake, Intel, Broadwell

VR-Zone is returning to their "leak everything Intel has" gig with a few light details about Skylake, the architecture after Broadwell, and its accompanying 100-Series chipset. The main detail is that Skylake, despite Broadwell and its delays, is still expected for 2015. This sort of makes sense, because this architecture runs on the same 14nm fabrication process as Broadwell, but it is surprising nonetheless. Intel could have slowed down its entire release cycle to compensate for how difficult it is to make smaller transistors and keep a steady "Tick-Tock".

Or maybe they hope that the process shrink after Skylake, Cannonlake at 10nm, will be on schedule?

Intel-Skylake-Platform-Details1-1024x718.jpg

Image Credit: VR-Zone

The second major detail is the available sockets. A couple of years ago, there was a fear that Intel would drop LGA sockets, starting with Broadwell, and switch entirely to the non-replaceable BGA soldered-to-the-motherboard format. Intel has later decided to support LGA with Broadwell and that will continue with Skylake.

This leads us to the third major detail - product categories. There will be four of them in the consumer range: H (BGA) for regular notebooks, Y (BGA) for desktops and all-in-ones, U (BGA) for ultrabooks, and S (LGA) for standard desktop computers. The slide lists a few more details which I believe signify core count and GPU version. If so, the lineup of Skylake processors would be the following:

  • (BGA) Quad Core Skylake-H with GT2 Graphics
  • (BGA) Quad Core Skylake-H with GT4e Graphics, the successor to Iris Pro.
  • (BGA) Dual Core Skylake-Y with GT2 Graphics
  • (BGA) Dual Core Skylake-U with GT2 Graphics
  • (BGA) Dual Core Skylake-U with GT3e Iris Pro Graphics
  • (LGA) Quad Core Skylake-S with GT2 Graphics
  • (LGA) Dual Core Skylake-S with GT2 Graphics
  • (LGA) Quad Core Skylake-S with GT4e Graphics, the successor to Iris Pro.

The inclusion of an enthusiast, LGA SKU with GT4e graphics is promising, especially for us. We, of course, continue to want products that we can, you know, buy and put into our desktops at will. It will certainly be interesting to see how these GPUs perform and it could lead to some healthy SteamOS builds.

There's a lot of information here. Expect us to chew on this over the next little while.

Source: VR-Zone

ARM Claims x86 Android Binary Translation on Intel SoC Hurting Efficiency

Subject: Processors, Mobile | April 30, 2014 - 07:06 PM |
Tagged: Intel, clover trail, Bay Trail, arm, Android

While we are still waiting for those mysterious Intel Bay Trail based Android tablets to find their way into our hands, we met with ARM today to discuss quite few varying topics. One of them centered around the cost of binary translation - the requirement to convert application code compiled for one architecture and running it after conversion on a different architecture. In this case, running native ARMv7 Android applications on an x86 platform like Bay Trail from Intel.

translate1.jpg

Based on results presented by ARM, so take everything here in that light, more than 50% of the top 250 applications in the Android Play Store require binary translation to run. 23-30% have been compiled to x86 natively, 20-21% run through Dalvik and the rest have more severe compatibility concerns. That paints a picture of the current state of Android apps and the environment in which Intel is working while attempting to release Android tablets this spring.

translate2.jpg

Performance of these binary translated applications will be lower than they would be natively, as you would expect, but to what degree? These results, again gathered by ARM, show a 20-40% performance drop in games like Riptide GP2 and Minecraft while also increasing "jank" - a measure of smoothness and stutter found with variances in frame rates. These are applications that exist in a native mode but were tricked into running through binary conversion as well. The insinuation is that we can now forecast what the performance penalty is for applications that don't have a natively compiled version and are forced to run in translation mode.

translate3.jpg

The result of this is lower battery life as it requires the CPU to draw more power to keep the experience close to nominal. While gaming on battery, which most people do with items like the Galaxy Tab 3 used for testing, a 20-35% decrease in game time will hurt Intel's ability to stand up to the best ARM designs on the market.

Other downsides to this binary translation include longer load times for applications, lower frame rates and longer execution time. Of course, the Galaxy Tab 3 10.1 is based on Intel's Atom Z2560 SoC, a somewhat older Clover Trail+ design. That is the most modern currently available Android platform from Intel as we are still awaiting Bay Trail units. This also explains why ARM did not do any direct performance comparisons to any devices from its partners. All of these results were comparing Intel in its two execution modes: native and translated.

Without a platform based on Bay Trail to look at and test, we of course have to use the results that ARM presented as a placeholder at best. It is possible that Intel's performance is high enough with Silvermont that it makes up for these binary translation headaches for as long as necessary to see x86 more ubiquitous. And in fairness, we have seen many demonstrations from Intel directly that show the advantage of performance and power efficiency going in the other direction - in Intel's favor. This kind of debate requires some more in-person analysis with hardware in our hands soon and with a larger collection of popular applications.

More from our visit with ARM soon!

Author:
Subject: Processors
Manufacturer: AMD

AMD Makes some Lemonade...

I guess we could say that AMD has been rather busy lately.  It seems that a significant amount of the content on PC Perspective this month revolved around the AMD AM1 platform.  Before that we had the Kaveri products and the R7 265.  AMD also reported some fairly solid growth over the past year with their graphics and APU lines.  Things are not as grim and dire as they once were for the company.  This is good news for consumers as they will continue to be offered competing solutions that will vie for that hard earned dollar.

amd_bm_02.jpg

AMD is continuing their releases for 2014 with the announcement of their latest low-power and mainstream mobile APUs.  These are codenamed “Beema” and “Mullins”, but they are based on the year old Kabini chip.  This may cause a few people to roll their eyes as AMD has had some fairly unimpressive refreshes in the past.  We saw the rather meager increases in clockspeed and power consumption with Brazos 2.0 a couple of years back, and it looked like this would be the case again for Beema and Mullins.

It isn’t.

I was again expecting said meager improvements in power consumption and clockspeeds that we had received all those years ago with Brazos 2.0.  Turns out I was wrong.  This is a fairly major refresh which does a few things that I did not think were entirely possible, and I’m a rather optimistic person.   So why is this release surprising?  Let us take a good look under the hood.

Click here to read the entire Beema/Mullins introduction!

The Health of Intel's Many Divisions...

Subject: General Tech, Processors, Mobile | April 16, 2014 - 08:40 PM |
Tagged: Intel, silvermont, arm, quarterly earnings, quarterly results

Sean Hollister at The Verge reported on Intel's recent quarterly report. Their chosen headline focuses on the significant losses incurred from the Mobile and Communications Group, the division responsible for tablet SoCs and 3G/4G modems. Its revenue dropped 52%, since last quarter, and its losses increased about 6%. Intel is still making plenty of money, with $12.291 billion USD in profits for 2013, but that is in spite of Mobile and Communications losing $3.148 billion over the same time.

intel-computex-07.jpg

Intel did have some wins, however. The Internet of Things Group is quite profitable, with $123 million USD of income from $482 million of revenue. They also had a better March quarter than the prior year, up a few hundred million in both revenue and profits. Also, Mobile and Communications should have a positive impact on the rest of the company. The Silvermont architecture, for instance, will eventually form the basis for 2015's Xeon Phi processors and co-processors.

It is concerning that Internet of Things has over twice the sales of Mobile but I hesitate to make any judgments. From my position, it is very difficult to see whether or not this trend follows Intel's projections. We simply do not know whether the division, time and time again, fails to meet expectations or whether Intel is just intentionally being very aggressive to position itself better in the future. I would shrug off the latter but, obviously, the former would be a serious concern.

The best thing for us to do is to keep an eye on their upcoming roadmaps and compare them to early projections.

Source: The Verge