Ivy Bridge versus Sandy Bridge in a power consumption showdown

Subject: Processors | September 18, 2012 - 01:49 PM |
Tagged: sandy bridge, Ivy Bridge, Intel

iXBT Labs wanted to see how the two most current generations of Intel processors compare when running identical tasks.  To put the processors under maximum load they used Linpack and Furmark as well as looking at video playback.  In the case of the Furmark and Linpack+Furmark tests it might have been nice to see a power versus performance metric, as better performance on the benchmarks could make a slightly less power hungry CPU even more attractive.  However the video playback is a great example of what you can expect in the way of power draw as no one wants a faster processor to play their movie back at an increased speed, a 2 hour movie should take 2 hours to play.  That makes the second metric a little more valuable for those on battery power.  Take a quick peek at their 2 page article here.

furmark190_logo.jpg

"We measured consumed power and energy consumption of four configurations based on the same testbed and four different CPUs belonging to two platforms: Intel Core i7-2700K (Sandy Bridge) and Intel Core i7-3770K (Ivy Bridge), Intel Core i5-2400 (Sandy Bridge) and Intel Core i5-3450 (Ivy Bridge)."

Here are some more Processor articles from around the web:

Processors

Source: iXBT Labs

AMD Binning Trinity APUs With Defective GPUs as CPU-Only Athlon Processors

Subject: Processors | September 13, 2012 - 01:03 PM |
Tagged: trinity, fm2, cpu, athlon, APU, AMD A series, amd, a75

NVIDIA’s new Kepler graphics cards (such as the GTX 660 we recently reviewed) will be getting most of the PC enthusiast attention today, but there is a bit of news about AMD to talk about as well.

The Trinity APU die.

Thanks to a Gigabyte motherboard compatibility list that was accidentally leaked to the internet, it was revealed that Advanced Micro Devices (AMD) would be repurposing Trinity APU dies that don’t quite make the cut due to non-operative graphics cores. Instead of simply discarding the processors, AMD is going to bin the chips into at least three CPU-only Athlon-branded processors. The Athlon X4 730, X4 740, and X4 750K are the three processors that are (now) public knowledge. All three of the CPUs have TDP ratings of 65W, and the X4 750K is even unlocked – allowing for overclocking. Further, the processors are all quad core parts with a total of 4MB of L2 cache (1MB per core).

The new Athlon-branded processors will be supported by the A75 chipset and will plug into FM2-socket equipped motherboards.

The following chart details the speeds and feeds of the Athlon processors with Trinity CPU cores.

  Clockspeed TDP
Athlon X4 730 2.8GHz 65W
Athlon X4 740 3.2GHz 65W
Athlon X4 750K 3.4GHz 65W

 

Unfortunately, there is no word on pricing or availability. You can expect them to be significantly cheaper than the fully fledged Trinity processors to keep them price-competitive and in-line with the company's traditional CPU-only processors.

Would you consider rolling a Trinity-based Athlon in a budget build?

Read about the new direction of AMD as it moves to producing Vishera processors and beyond.

Source: Bit-Tech
Author:
Subject: Processors
Manufacturer:

Apple Produces the new A6 for the iPhone 5

 

Today is the day that world gets introduced to the iPhone 5.  I of course was very curious about what Apple would be bringing to market the year after the death of Steve Jobs.  The excitement leading up to the iPhone announcement was somewhat muted as compared to years past, and a lot of that could be attributed to what has been happening in the Android market.  Companies like Samsung and HTC have released new high end phones that are not only faster and more expansive than previous versions, but they also worked really well and were feature packed.  While the iPhone 5 will be another success for Apple, for those somewhat dispassionate about the cellphone market will likely just shrug and say to themselves, “It looks like Apple caught up for the year, but too bad they really didn’t introduce anything really groundbreaking.”

a6_01.jpg

If there was one area that many were anxiously awaiting, it was that of the SOC (system on a chip) that Apple would use for the iPhone 5.  Speculation went basically from using a fresh piece of silicon based on the A5X (faster clocks, smaller graphics portion) to having a quad core monster running at high speeds but still sipping power.  It seems that we actually got something in between.  This is not a bad thing, but as we go forward we will likely see that the silicon again only matches what other manufacturers have been using since earlier this year.

Click here to read the entire article.

Intel Dives in to Oil!

Subject: General Tech, Cases and Cooling, Processors, Systems, Shows and Expos | September 12, 2012 - 09:34 PM |
Tagged: mineral oil, Intel

Intel has been dunking servers in oil for the last year and found the practice to be both safe and effective. Ironically it has been almost a year since we played around with mineral oil cooling – and when we did – we did not want to upgrade or fix anything. Intel agrees.

Intel inside, slick mess outside.

Often cooling a computer with a radiant that is not air focuses on cooling a handful of specific components and leaving the rest exposed to air. Gigabyte in their recent live presentation showed how the company reduced waste heat on the motherboard as it delivers power to the CPU as the latter likely receives more cooling than the former. With mineral oil you are able to more efficiently cool the entire system by immersing it in a better coolant than air.

aquarium.jpg

This still makes Ken wake up in a cold sweat… is what we convince ourselves.

After a full year of testing servers, Intel has decided that oil immersion cooling should be utilized by more server hosts to cut costs over traditional air conditioning. In their test they used heat sinks which were designed for air and dunked them pretty much unmodified into the mineral oil dielectric. Apart from the mess of it – Intel engineers always carried cleaning cloths just in case – Intel seems to only sing praise for results of their study.

Of course Intel could not help but promote their upcoming Phi platform which you may know as the ancestor of Larabee.

Now the real question is whether Intel just wanted to shamelessly plug themselves – or whether they are looking so closely at alternative cooling solutions as a result of their upcoming Phi platform. Will we eventually see heat dissipation concerns rear their heads with the new platform? Could Intel either be sitting on or throttling Phi because they are waiting for a new heat dissipation paradigm?

Could be interesting.

Author:
Subject: Processors
Manufacturer: Intel

Core Philosophy

Ah, IDF – the Intel Developer Forum.  Almost every year–while I sit in slightly uncomfortable chairs and stare at outdated and color washed projector screens–information is passed on about Intel's future architectures, products and technologies.  Last year we learned the final details about Ivy Bridge, and this year we are getting the first details about Haswell, which is the first architecture designed by Intel from the ground up for servers, desktops, laptops, tablets and phones. 

Design Philosophy

While Sandy Bridge and Ivy Bridge were really derivatives of prior designs and thought processes, the Haswell design is something completely different for the company.  Yes, the microarchitecture of Haswell is still very similar to Sandy Bridge (SNB), but the differences are more philosophical rather than technological. 

IMG_8192.JPG

Intel's target is a converged core: a single design that is flexible enough to be utilized in mobility devices like tablets while also scaling to the performance levels required for workstations and servers.  They retain the majority of the architecture design from Sandy Bridge and Ivy Bridge including the core design as well as the key features that make Intel's parts unique: HyperThreading, Intel Turbo Boost, and the ring interconnect. 

The three pillars that Intel wanted to address with Haswell were performance, modularity, and power innovations.  Each of these has its own key goals including improving performance of legacy code (existing), and having the ability to extract greater parallelism with less coding work for developers. 

IMG_8193.JPG

Continue reading our preview of the upcoming Intel Haswell architecture!!

Live Blog: Intel Developer Forum (IDF) 2012 Keynotes

Subject: Editorial, General Tech, Processors | September 11, 2012 - 11:52 AM |
Tagged: Intel, idf, idf 2012, keynote

The Intel Developer Forum is one of the best places in the world to get information and insight on the future of technology directly from those that creat it.  Join me as I live blog (Wi-Fi connection dependent as always!) the keynotes from all three days at http://pcper.com/live!!

logo.png

Be sure to stop by our PC Perspective Live page at 9am PT on Tuesday, Wednesday and Thursday!!

Intel Haswell CPUs to Have 10W TDP, Perfect for Mobile Devices

Subject: Processors | September 6, 2012 - 01:10 PM |
Tagged: ultrabook, Intel, haswell, cpu, 10w tdp

Intel’s next generation Haswell CPU architecture is set to lower the bar even further on power efficiency by requiring only 10W of cooling. As the company’s mainstream processor, and replacement for Ivy Bridge, it is set to launch in the first half of 2013.

Haswell will be based on a new socket called LGA 1150, and is said to feature incremental performance improvements over Ivy Bridge. Further, Haswell CPUs will include one of three tiers of GT1, GT2, or GT3 processor graphics along with the AVX2 instruction set.

What is interesting about the recent report by The Verge is that previous rumors suggested that Haswell would have higher TDP ratings than both Sandy Bridge and Ivy Bridge. Considering Ivy Bridge has several 35W desktop models, and a few 17W mobile parts, the reported 10W TDP of Haswell seems to indicate that at least the mobile editions of Haswell will actually have much lower TDPs than Ivy Bridge. (It is not clear if detkop and non ultra-low-voltage (ULV) chips will see similar TDP improvements or not.)

The 10W TDP would mean that ultrabooks and other thin-and-light laptops could use smaller heatsinks and suggests that the processors will be more power efficient resulting in battery life improvements (which are always welcome). The Verge further quoted an Intel representative in stating that "It's really the first product we're building from the ground up for ultrabook."

While the lowest-power Haswell chips won’t be powerhouses on the performance front, with the improvements over Ivy Bridge to the CPU and GPU it should still handily best the company’s Atom lineup. Such a feat would allow Haswell to secure a spot powering future Windows 8 slates and other mobile devices where Atom is currently being used.

Just the fact that Intel has managed to get its next generation mainstream CPU architecture down to 10W is impressive, and I’m looking forward to see what kinds of devices such a low power x86-64 chip will enable.

Stay tuned for more Haswell news as the Intel Developer Forum (IDF) next week should be packed with new information. Here's hoping that the desktop chips manage some (smaller) TDP improvements as well!

Source: The Verge

New Low-Cost 35W Ivy Bridge Processors Coming

Subject: Processors | September 4, 2012 - 10:46 AM |
Tagged: sandy bridge, Ivy Bridge, Intel, core i3, 35w

Back in March of this year, Intel launched a slew of third generation Core Ivy Bridge processors. At the high end sat the Core i7-3770K with 4 cores, hyperthreading, 3.5 GHz clockspeed (3.9 GHz Turbo Boost), 8 MB L3 cache, and a 77W TDP for $332. The lineup went down in features – and price – from there all the way to the Core i5-3330S. The 3330S had four cores, 6 MB of L3 cache, a 65W TDP, and a clockspeed of 2.7 GHz (3.2 GHz Turbo Boost). Further, just about every CPU that was not a K, S, or T edition came equipped with the older HD 2500 integrated processor graphics. While the list comprised 18 new processors, the lower-end Core i3 Ivy Bridge CPUs were noticeably absent.

Fortunately, FanlessTech has managed to get ahold of pricing and specifications for five of those lower cost Intel chips. The new additions to Intel's lineup include three Ivy Bridge processors and two Sandy Bridge CPUs. Specifically, we have the i3-3240T, i3-3220T, Pentium G2100T, Pentium G645T, and Pentium G550T. All of those parts have a TDP of 35W and are priced very affordably.

Model   Cores / Threads Clockspeed  L3 Cache TDP Launch Price ($USD)
i3-3240T Ivy Bridge 2/4 2.90 GHz 3MB 35W $138
i3-3220T Ivy Bridge 2/4 2.80 GHz 3MB 35W $117
Pentium G2100T Ivy Bridge 2/2 2.60 GHz 3MB 35W $75
Pentium G645T Sandy Bridge 2/2 2.50 GHz 3MB 35W $64
Pentium G550T Sandy Bridge 2/2 2.20 GHz 2MB 35W $42

 

The Core i3-3240T and i3-3220T are dual core Ivy Bridge processors build on a 22nm process, and are priced at just over $100. The cheapest Ivy Bridge CPU is actually the Pentium G2100T at $75 so the barrier to entry for Intel’s latest chips is much lower than it was a few months ago. Intel’s second generation Core architecture is still alive and kicking as well with the Pentium G645T and G550T at $64 and $42 respectively.

Two specifications are still unkown: Turbo Boost clockspeeds (if any) and which version of processor graphics these chips will feature. On the graphics front, I think HD 2500 is a safe bet but Intel may throw everyone a curve ball and pack the higher-end processor graphics into the low end units – which are arguably the (computers) that need the better GPU the most.

Granted, these lower cost processors are not going to give you near the performance of the i7-3770K that we recently reviewed, but they are still important for low power and budget desktops. Bringing the power efficiency improvements of Ivy Bridge down to under $100 is definitely a good thing.

As far as availability, you can find some of the new low TDP processors at online retailers now (such as the Core i3-3220T), but others are not for sale yet. While I do not have any exact dates, they should be available shortly.

How would you put these low TDP dual cores to work?

Source: FanlessTech
Author:
Subject: Processors
Manufacturer: AMD

HotChips 2012

 

Ah, the end of August.  School is about to start.  American college football is about to get underway.  Hot Chips is now in full swing.  I guess the end of August caters to all sorts of people.  For the people who are most interested in Hot Chips, the amount of information on next generation CPU architectures is something to really look forward to.  AMD is taking this opportunity to give us a few tantalizing bits of information about their next generation Steamroller core which will be introduced with the codenamed “Kaveri” APU due out in 2013.

sr_sl_intro.jpg

AMD is seemingly on the brink of releasing the latest architectural update with Vishera.  This is a Piledriver+ based CPU that will find its way into AM3+ sockets.  On the server side it is expected that the Abu Dhabi processors will also be released in a late September timeframe.  Trinity was the first example of a Piledriver based product, and it showed markedly improved thermals as compared to previous Bulldozer based products, and featured a nice little bump in IPC in both single and multi-threaded applications.  Vishera and Abu Dhabi look to be Piledriver+, which essentially means that there are a few more tweaks in the design that *should* allow it to go faster per clock than Trinity.  There have been a few performance leaks so far, but nothing that has been concrete (or has shown final production-ready silicon).

Until that time when Vishera and its ilk are released, AMD is teasing us with some Steamroller information.  This presentation is featured at Hotchips today (August 28).  It is a very general overview of improvements, but very few details about how AMD is achieving increased performance with this next gen architecture are given.  So with that, I will dive into what information we have.

Click to read the entire article here.

AMD Adds New AMD FX-4130 CPU, Announces New Pricing for Desktop Processors

Subject: Processors | August 27, 2012 - 01:56 PM |
Tagged: amd, am3+, fx-4130

AMD has good news for those looking to build or upgrade an AMD powered system as they are lowering their prices on processors across the board as well as adding the new four core Socket AM3+ FX-4130, with a 3.8GHz base clock and 3.9GHz in Turbo.  It is not yet for sale but is expected to retail for $112, easily affordable for most users looking for a lower cost system.

AMD Price Moves Aug 2012.png

"The value proposition for the first generation AMD A-Series APUs is also compelling: A quad-core CPU and a DirectX® 11 highly-capable gaming GPU on a single-chip with more than 500 GFLOPs of compute power, for under $100 (A8 3850). Working together, the CPU and GPU can accelerate a range of applications to outperform a stand-alone CPU in some use cases. The lower-power first generation AMD A-Series APUs are even more affordable and are receiving positive reviews for small-form factor HTPCs as well.  Price reductions across the first generation AMD A-Series APUs stack are in effect now, so please check your local retailer!"

 

Source: AMD