Apple A8 Die Shot Released (and Debated)

Subject: Graphics Cards, Processors, Mobile | September 29, 2014 - 01:53 AM |
Tagged: apple, a8, a7, Imagination Technologies, PowerVR

First, Chipworks released a dieshot of the new Apple A8 SoC (stored at archive.org). It is based on the 20nm fabrication process from TSMC, which they allegedly bought the entire capacity for. From there, a bit of a debate arose regarding what each group of transistors represented. All sources claim that it is based around a dual-core CPU, but the GPU is a bit polarizing.

apple-a8-dieshot-chipworks.png

Image Credit: Chipworks via Ars Technica

Most sources, including Chipworks, Ars Technica, Anandtech, and so forth believe that it is a quad-core graphics processor from Imagination Technologies. Specifically, they expect that it is the GX6450 from the PowerVR Series 6XT. This is a narrow upgrade over the G6430 found in the Apple A7 processor, which is in line with the initial benchmarks that we saw (and not in line with the 50% GPU performance increase that Apple claims). For programmability, the GX6450 is equivalent to a DirectX 10-level feature set, unless it was extended by Apple, which I doubt.

apple-a8-dieshot-dailytech.png

Image Source: DailyTech

DailyTech has their own theory, suggesting that it is a GX6650 that is horizontally-aligned. From my observation, their "Cluster 2" and "Cluster 5" do not look identical at all to the other four, so I doubt their claims. I expect that they heard Apple's 50% claims, expected six GPU cores as the rumors originally indicated, and saw cores that were not there.

Which brings us back to the question of, "So what is the 50% increase in performance that Apple claims?" Unless they had a significant increase in clock rate, I still wonder if Apple is claiming that their increase in graphics performance will come from the Metal API even though it is not exclusive to new hardware.

But from everything we saw so far, it is just a handful of percent better.

Intel Expands x86 SoC Program to Tsinghua Unigroup

Subject: General Tech, Processors, Mobile | September 27, 2014 - 02:38 PM |
Tagged: Intel, spreadtrum, rda, Rockchip, SoC

A few months ago, Intel partnered with Rockchip to develop low-cost SoCs for Android. The companies would work together on a design that could be fabricated at TSMC. This time Intel is partnering with Tsinghua Unigroup Ltd. and, unlike Rockchip, also investing in them. The deal will be up to $1.5 billion USD in exchange for a 20% share (approximately) of a division of Tsinghua.

Spreadtrum_logo.png

Image Credit: Wikipedia

Intel is hoping to use this partnership to develop mobile SoCs, for smart (and "feature") phones, tablets, and other devices, and get significant presence in the Chinese mobile market. Tsinghua acquired Spreadtrum Communications and RDA Microelectronics within the last two years. The "holding group" that owns these division is apparently the part of Tsinghua which Intel is investing in, specifically.

Spreadtrum will produce SoCs based on Intel's "Intel Architecture". This sounds like they are referring to the 32-bit IA-32, which means that Spreadtrum would be developing 32-bit SoCs, but it is possible that they could be talking about Intel 64. These products are expected for 2H'15.

Source: Intel

Linux loves Haswell-E

Subject: Processors | September 25, 2014 - 02:56 PM |
Tagged: linux, X99, core i7-5960x, Haswell-E

After the smoke from their previous attempt at testing the i7 5960X CPU Phoronix picked up a Gigabyte X99-UD4-CF and have now had a chance to test Haswell-E performance on Linux.  The new processor is compared to over a dozen others on machines running Ubuntu and really showed up the competition on benchmarks that took advantage of the 8 cores.  Single threaded applications that depended on a higher clock speed proved to be a weakness as the 4790K's higher frequency allowed it to outperform the new Haswell-E processor.  Check out the very impressive results of Phoronix's testing right here.

image.php_.jpg

"With the X99 burned-up motherboard problem of last week appearing to be behind us with no further issues when using a completely different X99 motherboard, here's the first extensive look at the Core i7 5960X Haswell-E processor running on Ubuntu Linux."

Here are some more Processor articles from around the web:

Processors

Source: Phoronix

Want Haswell-EP Xeons Without Expensive DDR4 Memory?

Subject: General Tech, Motherboards, Processors | September 20, 2014 - 06:51 PM |
Tagged: xeon, Haswell-EP, ddr4, ddr3, Intel

Well this is interesting and, while not new, is news to me.

ram.jpg

The upper-tier Haswell processors ushered DDR4 into the desktops for enthusiasts and servers, but DIMMs are quite expensive and incompatible with the DDR3 sticks that your organization might have been stocking up on. Despite the memory controller being placed on the processor, ASRock has a few motherboards which claim DDR3 support. ASRock, responding to Anandtech's inquiry, confirmed that this is not an error and Intel will launch three SKUs, one eight-core, one ten-core, and one twelve-core, with a DDR3-supporting memory controller.

The three models are:

  E5-2629 v3 E5-2649 v3 E5-2669 v3
Cores (Threads) 8 (16) 10 (20) 12 (24)
Clock Rate 2.4 GHz 2.3 GHz 2.3 Ghz
L3 Cache 20MB 25MB 30MB
TDP 85W 105W 120W

The processors, themselves, might not be cheap or easily attainable, though. There are rumors that Intel will require customers purchase at least a minimum amount. It might not be worth buying these processors unless you have a significant server farm (or similar situation).

Source: Anandtech

First Apple A8 Benchmarks Show... "Modest" Increase

Subject: General Tech, Processors, Mobile | September 12, 2014 - 01:30 PM |
Tagged: apple, apple a8, SoC, iphone 6, iphone 6 plus

So one of the first benchmarks for Apple's A8 SoC has been published to Rightware, and it is not very different from its predecessor. The Apple A7 GPU of last year's iPhone 5S received a score of 20,253.80 on the Basemark X synthetic benchmark. The updated Apple A8 GPU, found on the iPhone 6, saw a 4.7% increase, to 21204.26, on the same test.

apple-a8-rightware.png

Again, this is a synthetic benchmark and not necessarily representative of real-world performance. To me, though, it wouldn't surprise me if the GPU is identical, and the increase corresponds mostly to the increase in CPU performance. That said, it still does not explain the lack of increase that we see, despite Apple's switch to TSMC's 20nm process. Perhaps it matters more in power consumption and non-gaming performance? That does not align well with their 20% faster CPU and 50% faster GPU claims...

Speaking of gaming performance, iOS 8 introduces the Metal API, which is Apple's response to Mantle, DirectX 12, and OpenGL Next Initiative. Maybe that boost will give Apple a pass for a generation? Perhaps we will see the two GPUs (A7 and A8) start to diverge in the Metal API? We shall see when more benchmarks and reviews get published.

Source: Rightware

Qualcomm Snapdragon 210 Has LTE for Sub-$100 Devices

Subject: General Tech, Processors, Mobile | September 11, 2014 - 06:27 PM |
Tagged: qualcomm, snapdragon 210, snapdragon, LTE, cheap tablet

The Snapdragon 210 was recently announced by Qualcomm to be an SoC for cheap, sub-$100 tablets and mobile phones. With it, the company aims to bring LTE connectivity to that market segment, including Dual SIM support. It will be manufactured on the 28nm process, with up to four ARM CPU cores and a Qualcomm Adreno 304 GPU.

Qualcomm_Snapdragon_logo.png

According to Qualcomm, the SoC can decode 1080p video. It will also be able to manage cameras with up to 8 megapixels of resolution, including HDR, autofocus, auto white balance, and auto exposure. Let's be honest, you will not really get much more than that for a sub-$100 device.

The Snapdragon 210 has been given Quick Charge 2.0, normally reserved for the 400-line and up, refill the battery quickly when connected to a Quick Charge 2.0-supporting charger (ex: the Motorola Turbo Charger). Quick Charge 1.0 worked by optimizing how energy was delivered to the battery through a specification. Quick Charge 2.0 does the same, just with 60 watts of power (!!). For reference, the USB standard defines 2.5W, which is 5V at 0.5A, although the specification is regularly extended to 5 or 10 watts.

Devices featuring the Snapdragon 210 are expected for the first half of 2015.

Source: Qualcomm
Author:
Manufacturer: Intel

Core M 5Y70 Early Testing

During a press session today with Intel, I was able to get some early performance results on Broadwell-Y in the form of the upcoming Core M 5Y70 processor.

llama1.jpg

Testing was done on a reference design platform code named Llama Mountain and at the heart of the system is the Broadwell-Y designed dual-core CPU, the Core M 5Y70, which is due out later this year. Power consumption of this system is low enough that Intel has built it with a fanless design. As we posted last week, this processor has a base frequency of just 1.10 GHz but it can boost as high as 2.6 GHz for extra performance when it's needed.

Before we dive into the actual result, you should keep in mind a couple of things. First, we didn't have to analyze the systems to check driver revisions, etc., so we are going on Intel's word that these are setup as you would expect to see them in the real world. Next, because of the disjointed nature of test were were able to run, the comparisons in our graphs aren't as great as I would like. Still, the results for the Core M 5Y70 are here should you want to compare them to any other scores you like.

First, let's take a look at old faithful: CineBench 11.5.

cb11.png

UPDATE: A previous version of this graph showed the TDP for the Intel Core M 5Y70 as 15 watts, not the 4.5 watt listed here now. The reasons are complicated. Even though the Intel Ark website lists the TDP of the Core M 5Y70, Intel has publicly stated the processor will make very short "spikes" at 15 watts when in its highest Turbo Boost modes. It comes to a discussion of semantics really. The cooling capability of the tablet is only targeted to 4.5-6.0 watts and those very short 15 watt spikes can be dissipated without the need for extra heatsink surface...because they are so short. SDP anyone? END UPDATE

With a score of 2.77, the Core M 5Y70 processor puts up an impressive fight against CPUs with much higher TDP settings. For example, Intel's own Pentium G3258 gets a score of 2.71 in CB11, and did so with a considerably higher thermal envelope. The Core i3-4330 scores 38% higher than the Core M 5Y70 but it requires a TDP 3.6-times larger to do so. Both of AMD's APUs in the 45 watt envelope fail to keep up with Core M.

Continue reading our preview of Intel Core M 5Y70 Performance!!

Centaur Technology Extends Their Website Countdown...

Subject: General Tech, Processors, Mobile | September 9, 2014 - 08:38 PM |
Tagged: x86, VIA, centaur technologies

In early July, we reported on VIA's Centaur Technology division getting a new website. At the time, we anticipated that it would coincide with an announcement about Isaiah II, their rumored to be upcoming x86-based SoC (maybe even compatible with ARM, too).

Android-x86.png

Fifty-one days later, on August 31st, 2014, we came back at quarter-to-four EDT and let the website run its course, refreshing occasionally. 4 PM hit and... the counter stayed at 0 days, 0 hours, 0 minutes, and 0 seconds. Okay, I said. For about an hour, I refreshed occasionally because things could have happened on Labour Day weekend. I, then, came back late in the evening, and the day after. I next thought about it the week after, at which point the website was updated... with a timer that expires on September 30th, 2014.

Well... crap.

So by the end of the month, we may find out what Centaur is trying to announce. I am a little less confident in the breadth of the announcement, given that the company waited for the timer to lapse before correcting their mistake. I would expect that if their big announcement, like a new SoC, were to hold up the launch, the company would have known ahead of time. At the moment, it sounds like a typical website redesign which got delayed.

I will hopefully be pleasantly surprised come the end of the month.

Intel Developer Forum (IDF) 2014 Keynote Live Blog

Subject: Processors, Shows and Expos | September 9, 2014 - 11:02 AM |
Tagged: idf, idf 2014, Intel, keynote, live blog

Today is the beginning of the 2014 Intel Developer Forum in San Francisco!  Join me at 9am PT for the first of our live blogs of the main Intel keynote where we will learn what direction Intel is taking on many fronts!

intelicon.jpg

Author:
Subject: Processors
Manufacturer: Intel

Server and Workstation Upgrades

Today, on the eve of the Intel Developer Forum, the company is taking the wraps off its new server and workstation class high performance processors, Xeon E5-2600 v3. Known previously by the code name Haswell-EP, the release marks the entry of the latest microarchitecture from Intel to multi-socket infrastructure. Though we don't have hardware today to offer you in-house benchmarks quite yet, the details Intel shared with me last month in Oregon are simply stunning.

slides01.jpg

Starting with the E5-2600 v3 processor overview, there are more changes in this product transition than we saw in the move from Sandy Bridge-EP to Ivy Bridge-EP. First and foremost, the v3 Xeons will be available in core counts as high as 18, with HyperThreading allowing for 36 accessible threads in a single CPU socket. A new socket, LGA2011-v3 or R3, allows the Xeon platforms to run a quad-channel DDR4 memory system, very similar to the upgrade we saw with the Haswell-E Core i7-5960X processor we reviewed just last week.

The move to a Haswell-based microarchitecture also means that the Xeon line of processors is getting AVX 2.0, known also as Haswell New Instructions, allowing for 2x the FLOPS per clock per core. It also introduces some interesting changes to Turbo Mode and power delivery we'll discuss in a bit.

slides02.jpg

Maybe the most interesting architectural change to the Haswell-EP design is per core P-states, allowing each of the up to 18 cores running on a single Xeon processor to run at independent voltages and clocks. This is something that the consumer variants of Haswell do not currently support - every cores is tied to the same P-state. It turns out that when you have up to 18 cores on a single die, this ability is crucial to supporting maximum performance on a wide array of compute workloads and to maintain power efficiency. This is also the first processor to allow independent uncore frequency scaling, giving Intel the ability to improve performance with available headroom even if the CPU cores aren't the bottleneck.

Continue reading our overview of the new Intel Xeon E5-2600 v3 Haswell-EP Processors!!