You've met Haswell, but have you overclocked it?

Subject: Processors | June 3, 2013 - 06:53 PM |
Tagged: haswell, z87, overclocking

If you haven't read your fill about Haswell's architecture you should cast your eyes onto Ryan's full review for an indepth look at the new design of Intel's Core processors.  If you have already done your homework and are now more interested in how well this new processor can overclock then heading to [H]ard|OCP will satisfy your curiosity.  When testing for the best overclock [H] utilized two different Z87 boards from ASUS to ensure we could see what the processor could do, not just what the motherboard was capable of but in the end the results were similar.  They also included a quick guide at the end for those wanting to apply an overclock without spending a lot of time in the BIOS.   Check it out here.

Hhaswell.png

"Intel's clock keeps ticking and today lands on a "tock" in the development cycle. The new desktop Haswell processor represents a new microarchitecture built on the tried and true 22nm process technology that we have come to know and love with Intel's current Ivy Bridge microarchitecture. But what does Haswell mean for the computer enthusiast?"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

Samsung Galaxy Tab 3 10.1: Intel inside an Android?

Subject: General Tech, Graphics Cards, Processors, Mobile | June 3, 2013 - 03:00 AM |
Tagged: Intel, atom, Clover Trail+, SoC, Samsung, Galaxy Tab 3 10.1

While Reuters is being a bit cagey with their source, if true: Intel may have nabbed just about the highest profile Android tablet design win possible. The, still currently unannounced, Samsung Galaxy Tab 3 10.1 is expected to embed Intel's Clover Trail+ System on a Chip (SoC). Samsung would not be the largest contract available in the tablet market, their previous tablets ship millions of units each; they are a good OEM vendor to have.

Source: BGR India

Samsung is also known for releasing multiple versions of the same device for various regions and partners. The Galaxy Tab 10.1 and Galaxy Tab 2 10.1 did not have a variety of models with differing CPUs like, for instance, the Galaxy S4 phone did; the original "10.1" contained an NVIDIA Tegra 2 and the later "2 10.1" embed a TI OMAP 4430 SoC. It is entirely possible that Intel won every Galaxy Tab 3 10.1 tablet ever, but it is also entirely possible that they did not.

Boy Genius Report India (BGR India, video above) also claims more specific hardware based on a pair of listings at GLBenchmark. The product is registered under the name Santos10: GT-P5200 being the 3G version, and GT-P5210 being the Wi-Fi version.

These specifications are:

  • Intel Atom Z2560 800-933 MHz dual-core SoC (4 threads, 1600 MHz Turbo)
  • PowerVR SGX 544MP GPU (OpenGL ES 2.0)
  • 1280x800 display
  • Android 4.2.2

I am not entirely sure what Intel has to offer with Clover Trail+ besides, I would guess, reliable fabrication. Raw graphics performance is still about half of Apple's A6X GPU although, if the leaked resolution is true, it has substantially less pixels to push without being attached to an external display.

Maybe Intel made it too cheap to refuse?

Source: Reuters
Author:
Subject: Processors, Mobile
Manufacturer: ARM
Tagged: t622, mali, cortex, arm, A9, A15, a12

Cortex-A12 fills a gap

Starting off Computex with an interesting announcement, ARM is talking about a new Cortex-A12 core that will attempt to address a performance gap in the SoC ecosystem between the A9 and A15.  In the battle to compete with Krait and Intel's Silvermont architecture due in late 2013, ARM definitely needed to address the separation in performance and efficiency of the A9 and A15. 

arm1.jpg

Source: ARM.  Top to bottom: Cortex-A15, A12, A9 die size estimate

Targeted at mid-range devices that tend to be more cost (and thus die-size) limited, the Cortex-A12 will ship in late 2014 for product sampling and you should begin seeing hardware for sale in early 2015.

arm3.jpg

Architecturally, the changes for the upcoming A12 core revolve around a move to fully out of order dual-issue design including the integrated floating point units.  The execution units are faster and the memory design has been improved but ARM wasn't ready to talk about specifics with me yet; expect that later in the year. 

arm6.jpg

ARM claims this results in a 40% performance gain for the Cortex-A12 over the Cortex-A9, tested in SPECint.  Because product won't even start sampling until late in 2014 we have no way to verify this data yet or to evaluate efficiency claims.  That time lag between announcement and release will also give competitors like Intel, AMD and even Qualcomm time to answer back with potential earlier availability.

Continue reading our overview of the newly announced ARM Cortex-A12 and Mali-T622!!

New Silvermont Atom Chips Will Use Pentium and Celeron Branding

Subject: Processors | June 2, 2013 - 11:32 PM |
Tagged: silvermont, pentium, Intel, haswell, celeron, atom, 22nm

In addition to the impending launch of Intel's desktop Haswell processors, the company is also working on new Atom-series chips based on Intel's Silvermont architecture. Ryan Shrout wrote about the upcoming Atom architecture a few weeks ago, and you can read up on it here. However, in short, Atoms using the Silvermont architecture are 22nm SoCs with a Hyper Threaded, dual-module quad core design that comes with burst-able clockspeeds and up to 2.5x the performance of chips using the previous generation Saltwell architecture. Intel is promising up to a 50% IPC (instructions per clock) increase, and 4.7x lower power versus previous generation Atom CPUs.

A block diagram of Intel's upcoming Silvermont architecture.

With that said, over the weekend I read an interesting article over at PC World that hinted at these new Silvermont-based Atom processors taking up the Pentium and Celeron branded CPU mantle. In speaking with Intel employee Kathy Gill, the site learned that Intel will be using the Silvermont architecture in code-named Bay Trail-M and Bay Trail-D processors for notebooks and desktops respectively. The Bay Trail code name isn't new, but Intel's use of the Pentium and Celeron branding for these Atom chips is. For the past few generations, Intel has re-purposed lower-tier or lower binned Core processors as Pentiums or Celerons by disabling features and/or clocking them lower. It seems that Intel finally believes that its Atom lineup is good enough to serve those low-end desktop and notebook CPU purposes under the budget brand families.

Intel Celeron Logo.jpg

Kathy Gill further stated that "we aren't ready to disclose additional details on Haswell plans at this time,” which does not rule out Haswell-based Celeron and Pentium chips. It does not confirm them either, however.

After a chat with PC Perspective's Josh Walrath on the issue, I'm not certain which direction Intel will take, but I do believe that Intel will (at least) favor the Atom chips for the Pentium and Celeron brands/lines because the company will see much better profit margins with the Silvermont-based chips compared to Haswell-based ones. On the other hand, Intel would lose out on the ability to re-brand low binning Core i3s as Pentium or Celeron CPUs. Further, going with both architectures would complicate matters and invite a good amount of brand confusion for many consumers in spite of allowing a mix of better profit margins and re-purposing chips that otherwise wouldn't make the cut (admittedly, Intel probably has to artificially limit some number of chips to keep up with the volume of Pentium and Celerons needed, it's difficult to say to what extent though).

Hopefully we will know more about Intel's Bay Trail CPUs and branding plans at Computex later this week.

What do you think of this move by Intel, and will the Silvermont-based Bay Trail chips be up to the task?

Source: PC World

AIDA64 Version 3.00 Released

Subject: Processors | June 2, 2013 - 10:43 PM |
Tagged: Kabini, haswell, FinalWire, aida64

01-aida64-title.PNG

Courtesy of FinalWire

Today, FinalWire Ltd. announced the release of version 3.00 of their diagnostic and benchmarking tool, AIDA64. This new version updates their Extreme Edition and Business Edition of the software.

02-shot2_gtx780_en.png

Courtesy of FinalWire

Source: FinalWire
Author:
Subject: Processors
Manufacturer: Intel

Haswell - A New Architecture

Thanks for stopping by our coverage of the Intel Haswell, 4th Generation Core processor and Z87 chipset release!  We have a lot of different stories for you to check out and I wanted to be sure you knew about them all. 

  1. PCPer Live! ASUS Z87 Motherboard and Intel Haswell Live Event! - Tuesday, June 4th we will be hosting a live streaming event with JJ from ASUS.  Stop by to learn about Z87 and overclocking Haswell and to win some motherboards and graphics cards!
  2. ASUS ROG Maximus VI Extreme Motherboard Review
  3. MSI Z87-GD65 Gaming Motherboard Review
  4. ASUS Gryphon Z87 Micro-ATX Motherboard Review

 

This spring has been unusually busy for us here at PC Perspective - with everything from new APU releases from AMD, new graphics cards from NVIDIA and now new desktop and mobile processors from Intel.  There has never been a better time to be a technology enthusiast though some would argue that the days of the enthusiast PC builder are on the decline.  Looking at the revived GPU wars and the launch of Intel's Haswell architecture, 4th Generation Core processors we couldn't disagree more. 

Built on the same 22nm process technology that Ivy Bridge brought to the world, Haswell is a new architecture from Intel that really changes focus for the company towards a single homogenous design that has the ability to span wide ranging markets.  From tablets to performance workstations, Haswell will soon finds its way into just about every crevasse of your technology life. 

cpu3.jpg

Today we focus on the desktop though - the release of the new Intel Core i7-4770K, fully unlocked, LGA1150 processor built for the Z87 chipset and DIY builders everywhere.  In this review we'll discuss the architectural changes Haswell brings, the overclocking capabilities and limitations of the new design, application performance, graphics performance and quite a bit more. 

intel2.jpg

Haswell remains a quad-core processor built on 1.4 billion transistors in a die measuring 177 mm2 with integrated processor graphics, shared L3 cache, dual channel DDR3 memory controller.  But much has changed - let's dive in.

Continue reading our review of the new Hawell architecture and the Core i7-4770K processor!!

Author:
Subject: Processors
Manufacturer: AMD

Codename Kyoto

Kabini is a pretty nifty little chip.  So nifty, AMD is actually producing server grade units for the growing micro-server market.  As readers may or may not remember, AMD bought up SeaMicro last year to get a better grip on the expanding micro-server market.  While there are no official announcements from SeaMicro about offerings utilizing the server-Kabini parts, we can expect there to be sooner as opposed to later.

opt_x_01.jpg

The Kabini parts (Jaguar + GCN) will be branded Opteron X-series.  So far there are two announced products; one utilizes the onboard graphics portion while the other has the GCN based unit disabled.  The products have a selectable TDP that ranges from 9 watts to 22 watts.  This should allow the vendors to further tailor the chips to their individual solutions.

The X1150 is the GPU-less product with adjustable TDPs ranging from 9 to 17 watts.  It is a native quad core product with 2 MB of L2 cache.  It can be clocked up to 2 GHz, which we assume is that 17 watts range.  The X2150 has an adjustable TDP range from 11 to 22 watts.  The four cores can go to a max speed of 1.9 GHz while the GPU can go from 266 MHz up to a max 600 MHz.

Click here to read the entire article on the new Opteron X-series!

Author:
Subject: Processors
Manufacturer: AMD

The Architectural Deep Dive

AMD officially unveiled their brand new Bobcat architecture to the world at CES 2011.  This was a very important release for AMD in the low power market.  Even though Netbooks were a dying breed at that time, AMD experienced a good uptick in sales due to the good combination of price, performance, and power consumption for the new Brazos platform.  AMD was of the opinion that a single CPU design would not be able to span the power consumption spectrum of CPUs at the time, and so Bobcat was designed to fill that space which existed from 1 watt to 25 watts.  Bobcat never was able to get down to that 1 watt point, but the Z-60 was a 4.5 watt part with two cores and the full 80 Radeon cores.

jag_01.jpg

The Bobcat architecture was produced on TSMC’s 40 nm process.  AMD eschewed the upcoming 32 nm HKMG/SOI process that was being utilized for the upcoming Llano and Bulldozer parts.  In hindsight, this was a good idea.  Yields took a while to improve on GLOBALFOUNDRIES new process, while the existing 40 nm product from TSMC was running at full speed.  AMD was able to provide the market in fairly short order with good quantities of Bobcat based APUs.  The product more than paid for itself, and while not exactly a runaway success that garnered many points of marketshare from Intel, it helped to provide AMD with some stability in the market.  Furthermore, it provided a very good foundation for AMD when it comes to low power parts that are feature rich and offer competitive performance.

The original Brazos update did not happen, instead AMD introduced Brazos 2.0 which was a more process improvement oriented product which featured slightly higher speeds but remained in the same TDP range.  The uptake of this product was limited, and obviously it was a minor refresh to buoy purchases of the aging product.  Competition was coming from low power Ivy Bridge based chips, as well as AMD’s new Trinity products which could reach TDPs of 17 watts.  Brazos and Brazos 2.0 did find a home in low powered, but full sized notebooks that were very inexpensive.  Even heavily leaning Intel based manufacturers like Toshiba released Brazos based products in the sub-$500 market.  The combination of good CPU performance and above average GPU performance made this a strong product in this particular market.  It was so power efficient, small batteries were typically needed, thereby further lowering the cost.

All things must pass, and Brazos is no exception.  Intel has a slew of 22 nm parts that are encroaching on the sub-15 watt territory, ARM partners have quite a few products that are getting pretty decent in terms of overall performance, and the graphics on all of these parts are seeing some significant upgrades.  The 40 nm based Bobcat products are no longer competitive with what the market has to offer.  So at this time we are finally seeing the first Jaguar based products.  Jaguar is not a revolutionary product, but it improves on nearly every aspect of performance and power usage as compared to Bobcat. 

Continue reading our analysis of the new Jaguar and GCN architecture!!

Author:
Subject: Processors, Mobile
Manufacturer: AMD

A Reference Platform - But not a great one

Believe it or not, AMD claims that the Brazos platform, along with the "Brazos 2.0" update the following year, were the company's most successful mobile platforms in terms of sales and design wins.  When it first took the scene in late 2010, it was going head to head against the likes of Intel's Atom processor and the combination of Atom + NVIDIA ION and winning.  It was sold in mini-ITX motherboard form factors as well as small clamshell notebooks (gasp, dare we say...NETBOOKS?) and though it might not have gotten the universal attention it deserved, it was a great part.

With Kabini (and Temash as well), AMD is making another attempt to pull in some marketshare in the low power, low cost mobile markets.  I have already gone over the details of the mobile platforms that AMD is calling Elite Mobility (Temash) and Mainstream (Kabini) in a previous article that launched today.

12_0.jpg

This article will quickly focus on the real-world performance of the Kabini platform as demonstrated by a reference laptop I received while visiting AMD in Toronto a few weeks ago.  While this design isn't going to be available in retail (and I am somewhat thankful based on the build quality) the key is to look at the performance and power efficiency of the platform itself, not the specific implementation. 

Kabini Architecture Overview

The building blocks of Kabini are four Jaguar x86 cores and 128 Radeon cores colleted in a pair of Compute Units - similar in many ways to the CUs found in the Radeon HD 7000 series discrete GPUs.  Josh has written a very good article that focuses on the completely new architecture that is Jaguar and compared it to other processors including AMD's previous core used in Brazos, the Bobcat core. 

Continue reading our performance preview of the new AMD Kabini A4-5000 mainstream mobility APU!

Author:
Subject: Processors
Manufacturer: AMD

2013 Elite Mobility APU - Temash

AMD has a lot to say today.  At an event up in Toronto this month we got to sit down with AMD’s marketing leadership and key engineers to learn about the company’s plans for 2013 mobility processors.  This includes a refreshed high performance APU known as Richland that will replace Trinity as well as two brand new APUs based on Jaguar CPU cores and the GCN architecture for low power platforms. 

Josh has put together an article that details the Jaguar + GCN design of Temash and Kabini and I have also posted some initial performance results of the Kabini reference system AMD handed me in May.  This article will detail the plans that AMD has for each of these three mobile segments, starting with the newest entry, AMD’s Elite Mobility APU platform – Temash.

temash01_0.jpg

The goal of the APU, the combination of traditional x86 processing cores and a discrete style graphics system, was to offer unparalleled performance in smaller and more efficient form factors.  AMD believes that their leadership in the graphics front will offer them a good sized advantage in areas including performance tablets, hybrids and small screen clamshells that may or not be touch enabled.  They are acknowledging though that getting into the smallest tablets (like the Nexus 7) is not on the table quite yet and that content creation desktop replacements are probably outside the scope of Richland. 

 

2013 Elite Mobility APU – Temash

AMD will have the first x86 quad-core SoC design with Temash and AMD thinks it will make a big splash in a relatively new market known as the “high performance” tablet. 

temash02_0.jpg

Temash, built around Jaguar CPU cores and the graphics technology of GCN, will be able to offer fully accelerated video playback with transcode support as well with features like image stabilization and Perfect Picture enabled.  Temash will also be the only SoC to offer support for DX11 graphics and even though some games might not have the ability to show off added effects there are quite a few performance advantages of DX11 over DX10/9.  With more than 100% claimed GPU performance upgrade you’ll be able to drive displays at 2560x1600 for productivity use and even be able to take advantage of wireless display options. 

Continue reading our preview of the new 2013 mobility platforms featuring AMD APUs!!