Author:
Subject: Processors
Manufacturer: Intel

Light on architecture details

Our Intel Skylake launch coverage is intense! Make sure you hit up all the stories and videos that are interesting for you!

The Intel Skylake architecture has been on our radar for quite a long time as Intel's next big step in CPU design. Through leaks and some official information discussed by Intel over the past few months, we know at least a handful of details: DDR4 memory support, 14nm process technology, modest IPC gains and impressive GPU improvements. But the details have remained a mystery on how the "tock" of Skylake on the 14nm process technology will differ from Broadwell and Haswell.

Interestingly, due to some shifts in how Intel is releasing Skylake, we are going to be doing a review today with very little information on the Skylake architecture and design (at least officially). While we are very used to the company releasing new information at the Intel Developer Forum along with the launch of a new product, Intel has instead decided to time the release of the first Skylake products with Gamescom in Cologne, Germany. Parts will go on sale today (August 5th) and we are reviewing a new Intel processor without the background knowledge and details that will be needed to really explain any of the changes or differences in performance that we see. It's an odd move honestly, but it has some great repercussions for the enthusiasts that read PC Perspective: Skylake will launch first as an enthusiast-class product for gamers and DIY builders.

For many of you this won't change anything. If you are curious about the performance of the new Core i7-6700K, power consumption, clock for clock IPC improvements and anything else that is measurable, then you'll get exactly what you want from today's article. If you are a gear-head that is looking for more granular details on how the inner-workings of Skylake function, you'll have to wait a couple of weeks longer - Intel plans to release that information on August 18th during IDF.

01.jpg

So what does the addition of DDR4 memory, full range base clock manipulation and a 4.0 GHz base clock on a brand new 14nm architecture mean for users of current Intel or AMD platforms? Also, is it FINALLY time for users of the Core i7-2600K or older systems to push that upgrade button? (Let's hope so!)

Continue reading our review of the Intel Core i7-6700K Skylake processor!!

Author:
Manufacturer: Intel

Bioshock Infinite Results

Our Intel Skylake launch coverage is intense! Make sure you hit up all the stories and videos that are interesting for you!

Today marks the release of Intel's newest CPU architecture, code named Skylake. I already posted my full review of the Core i7-6700K processor so, if you are looking for CPU performance and specification details on that part, you should start there. What we are looking at in this story is the answer to a very simple, but also very important question:

Is it time for gamers using Sandy Bridge system to finally bite the bullet and upgrade?

I think you'll find that answer will depend on a few things, including your gaming resolution and aptitude for multi-GPU configuration, but even I was surprised by the differences I saw in testing.

sli1.jpg

Our testing scenario was quite simple. Compare the gaming performance of an Intel Core i7-6700K processor and Z170 motherboard running both a single GTX 980 and a pair of GTX 980s in SLI against an Intel Core i7-2600K and Z77 motherboard using the same GPUs. I installed both the latest NVIDIA GeForce drivers and the latest Intel system drivers for each platform.

  Skylake System Sandy Bridge System
Processor Intel Core i7-6700K Intel Core i7-2600K
Motherboard ASUS Z170-Deluxe Gigabyte Z68-UD3H B3
Memory 16GB DDR4-2133 8GB DDR3-1600
Graphics Card 1x GeForce GTX 980
2x GeForce GTX 980 (SLI)
1x GeForce GTX 980
2x GeForce GTX 980 (SLI)
OS Windows 8.1 Windows 8.1

Our testing methodology follows our Frame Rating system, which uses a capture-based system to measure frame times at the screen (rather than trusting the software's interpretation).

If you aren't familiar with it, you should probably do a little research into our testing methodology as it is quite different than others you may see online.  Rather than using FRAPS to measure frame rates or frame times, we are using an secondary PC to capture the output from the tested graphics card directly and then use post processing on the resulting video to determine frame rates, frame times, frame variance and much more.

This amount of data can be pretty confusing if you attempting to read it without proper background, but I strongly believe that the results we present paint a much more thorough picture of performance than other options.  So please, read up on the full discussion about our Frame Rating methods before moving forward!!

While there are literally dozens of file created for each “run” of benchmarks, there are several resulting graphs that FCAT produces, as well as several more that we are generating with additional code of our own.

If you need some more background on how we evaluate gaming performance on PCs, just check out my most recent GPU review for a full breakdown.

I only had time to test four different PC titles:

  • Bioshock Infinite
  • Grand Theft Auto V
  • GRID 2
  • Metro: Last Light

Continue reading our look at discrete GPU scaling on Skylake compared to Sandy Bridge!!

Report: Intel Core i7-6700K and i5-6600K Retail Box Photos and Pricing Leak

Subject: Processors | August 3, 2015 - 10:58 AM |
Tagged: Skylake, leak, Intel, i7-6700K, Core i7-6700K

Leaked photos of what appear to be the full retail box version of the upcoming Intel Core i7-6700K and i5-6600K "Skylake" unlocked CPU have appeared on imgur, making the release of these processors feel ever closer.

6700k_2.png

Is this really the new box graphic for the unlocked i7?

While the authenticity of these photos can't be verified through any official channel, they certainly do look real. We have heard of Skylake leaks - a.k.a. Skyleaks - for a while now, and the rumors point to an August release for these new LGA 1151 chips (sorry LGA 1150 motherboard owners!).

6700k_1.png

Looks real. But we do live in a Photoshop world...

We only have about four weeks to wait at the most if an August release is, in fact, imminent. If not, I blame Jeremy for getting our hopes up with terms like Skyleak™. I encourage you to direct all angry correspondence to his inbox.

i5_6600k.png

These boxes are very colorful (or colourful, if you will)

Update: A new report has emerged with US retail pricing for the upcoming Skylake lineup. Here is the chart from WCCFTech:

wccftech_chart.PNG

Chart taken from WCCFTech

The pricing of the top i7 part at $316 would be a welcome reduction from the current $339 retail of the i7-4790K. Now whether the 6700K can beat out that Devil's Canyon part remains to be seen. Doubtless we will have benchmarks and complete coverage once any official release is made by Intel for these parts.

Source: imgur

Iris Pro on Linux

Subject: Processors | July 31, 2015 - 03:37 PM |
Tagged: iris pro, Broadwell, linux, i7-5775C

The graphics core of new CPUs used to have issues on Linux at launch but recently this has become much less of an issue.  The newly released Iris Pro on the 5770C follows this trend as you can see in the benchmarks at Phoronix.  The OpenGL performance is a tiny bit slower overall on Linux, apart from OpenArena, but not enough to ruin your gaming experience.  With a new kernel on the horizon and a community working with the new GPU you can expect the performance gap to narrow.  Low cost gaming on a Linux machine becomes more attractive every day.

image.php_.jpg

"Resulting from the What Windows 10 vs. Linux Benchmarks Would You Like To See and The Phoronix Test Suite Is Running On Windows 10, here are our first benchmarks comparing the performance of Microsoft's newly released Windows 10 Pro x64 against Fedora 22 when looking at the Intel's OpenGL driver performance across platforms."

Here are some more Processor articles from around the web:

Processors

 

Source: Phoronix

AMD A8-7670K (Godavari) Launches with Steamroller

Subject: Processors | July 22, 2015 - 09:56 PM |
Tagged: amd, APU, Godavari, a8, a8-7670k

AMD's Godavari architecture is the last one based on Bulldozer, which will hold the company's product stack over until their Zen architecture arrives in 2016. The A10-7870K was added a month ago, with a 95W TDP at a MSRP of $137 USD. This involved a slight performance bump of +200 MHz at its base frequency, but a +100 MHz higher Turbo than its predecessor when under high load. More interesting, it does this at the same TDP and the same basic architecture.

amd-2015-A8-7670K+Blog+Post+Benchmark+Graphic+1.JPG

Remember that these are AMD's benchmarks.

The refresh has been expanded to include the A8-7670K. Some sites have reported that this uses the Excavator architecture as seen in Carrizo, but this is not the case. It is based on Steamroller. This product has a base clock of 3.6 GHz with a Turbo of up to 3.9 GHz. This is a +300 MHz Base and +100 MHz Turbo increase over the previous A8-7650K. Again, this is with the same architecture and TDP. The GPU even received a bit of a bump, too. It is now clocked at 757 MHz versus the previous generation's 720 MHz with all else equal, as far as I can tell. This should lead to a 5.1% increase in GPU compute throughput.

The A8-7670K just recently launched for an MSRP of $117.99. This 20$ saving should place it in a nice position below the A10-7870K for mainstream users.

Source: AMD

Meet the Intel Core i7-5775C Broadwell CPU

Subject: Processors | July 20, 2015 - 05:58 PM |
Tagged: Intel, i7-5775C, LGA1150, Broadwell, crystalwell

To keep it interesting and to drive tech reviewers even crazier, Intel has changed their naming scheme again, with C now designating an unlocked CPU as opposed to K on the new Broadwell models.  Compared to the previous 4770K, the TPD is down to 65W from 84W, the L3 cache has shrunk from 8MB to 6MB and the frequency of both the base and turbo clocks have dropped 200MHz. It does have the Iris Pro 6200 graphics core, finally available on an LGA chip.  Modders Inc. took the opportunity to clock both the flagship Haswell and Broadwell chips to 4GHz to do a clock for clock comparison of the architectures.  Check out the review right here.

5775diemap.jpg

"While it is important to recognize one's strengths and leverage it as an asset, accepting shortcomings and working on them is equally as important for the whole is greater than the sum of its parts."

Here are some more Processor articles from around the web:

Processors

Source: Modders Inc

TSMC Plans 10nm, 7nm, and "Very Steep" Ramping of 16nm.

Subject: Graphics Cards, Processors, Mobile | July 19, 2015 - 06:59 AM |
Tagged: Zen, TSMC, Skylake, pascal, nvidia, Intel, Cannonlake, amd, 7nm, 16nm, 10nm

Getting smaller features allows a chip designer to create products that are faster, cheaper, and consume less power. Years ago, most of them had their own production facilities but that is getting rare. IBM has just finished selling its manufacturing off to GlobalFoundries, which was spun out of AMD when it divested from fabrication in 2009. Texas Instruments, on the other hand, decided that they would continue manufacturing but get out of the chip design business. Intel and Samsung are arguably the last two players with a strong commitment to both sides of the “let's make a chip” coin.

tsmc.jpg

So where do you these chip designers go? TSMC is the name that comes up most. Any given discrete GPU in the last several years has probably been produced there, along with several CPUs and SoCs from a variety of fabless semiconductor companies.

Several years ago, when the GeForce 600-series launched, TSMC's 28nm line led to shortages, which led to GPUs remaining out of stock for quite some time. Since then, 28nm has been the stable work horse for countless high-performance products. Recent chips have been huge, physically, thanks to how mature the process has become granting fewer defects. The designers are anxious to get on smaller processes, though.

In a conference call at 2 AM (EDT) on Thursday, which is 2 PM in Taiwan, Mark Liu of TSMC announced that “the ramping of our 16 nanometer will be very steep, even steeper than our 20nm”. By that, they mean this year. Hopefully this translates to production that could be used for GPUs and CPUs early, as AMD needs it to launch their Zen CPU architecture in 2016, as early in that year as possible. Graphics cards have also been on that technology for over three years. It's time.

Also interesting is how TSMC believes that they can hit 10nm by the end of 2016. If so, this might put them ahead of Intel. That said, Intel was also confident that they could reach 10nm by the end of 2016, right until they announced Kaby Lake a few days ago. We will need to see if it pans out. If it does, competitors could actually beat Intel to the market at that feature size -- although that could end up being mobile SoCs and other integrated circuits that are uninteresting for the PC market.

Following the announcement from IBM Research, 7nm was also mentioned in TSMC's call. Apparently they expect to start qualifying in Q1 2017. That does not provide an estimate for production but, if their 10nm schedule is both accurate and also representative of 7nm, that would production somewhere in 2018. Note that I just speculated on an if of an if of a speculation, so take that with a mine of salt. There is probably a very good reason that this date wasn't mentioned in the call.

Back to the 16nm discussion, what are you hoping for most? New GPUs from NVIDIA, new GPUs from AMD, a new generation of mobile SoCs, or the launch of AMD's new CPU architecture? This should make for a highly entertaining comments section on a Sunday morning, don't you agree?

AMD Projects Decreased Revenue by 8% for Q2 2015

Subject: Graphics Cards, Processors | July 7, 2015 - 08:00 AM |
Tagged: earnings, amd

The projections for AMD's second fiscal quarter had revenue somewhere between flat and down 6%. The actual estimate, as of July 6th, is actually below the entire range. They expect that revenue is down 8% from the previous quarter, rather than the aforementioned 0 to 6%. This is attributed to weaker APU sales in OEM devices, but they also claim that channel sales are in line with projections.

amd-new2.png

This is disappointing news for fans of AMD, of course. The next two quarters will be more telling though. Q3 will count two of the launch months for Windows 10, which will likely include a bunch of new and interesting devices and aligns well with back to school season. We then get one more chance at a pleasant surprise in the fourth quarter and its holiday season, too. My intuition is that it won't be too much better than however Q3 ends up.

One extra note: AMD has also announced a “one-time charge” of $33 million USD related to a change in product roadmap. Rather than releasing designs at 20nm, they have scrapped those plans and will architect them for “the leading-edge FinFET node”. This might be a small expense compared to how much smaller the process technology will become. Intel is at 14nm and will likely be there for some time. Now AMD doesn't need to wait around at 20nm in the same duration.

Source: AMD

Tick Tock Tick Tock Tick Tock Tock

A few websites have been re-reporting on a leak from BenchLife.info about Kaby Lake, which is supposedly a second 14nm redesign (“Tock”) to be injected between Skylake and Cannonlake.

UPDATE (July 2nd, 3:20pm ET): It has been pointed out that many hoaxes have come out of the same source, and that I should be more clear in my disclaimer. This is an unconfirmed, relatively easy to fake leak that does not have a second, independent source. I reported on it because (apart from being interesting enough) some details were listed on the images, but not highlighted in the leak, such as "GT0" and a lack of Iris Pro on -K. That suggests that the leaker got the images from somewhere, but didn't notice those details, which implies that the original source was hoaxed by an anonymous source, who only seeded the hoax to a single media outlet, or that it was an actual leak.

Either way, enjoy my analysis but realize that this is a single, unconfirmed source who allegedly published hoaxes in the past.

intel-2015-kaby-lake-leak-01.png

Image Credit: BenchLife.info

If true, this would be a major shift in both Intel's current roadmap as well as how they justify their research strategies. It also includes a rough stack of product categories, from 4.5W up to 91W TDPs, including their planned integrated graphics configurations. This leads to a pair of interesting stories:

How Kaby Lake could affect Intel's processors going forward. Since 2006, Intel has only budgeted a single CPU architecture redesign for any given fabrication process node. Taking two attempts on the 14nm process buys time for 10nm to become viable, but it could also give them more time to build up a better library of circuit elements, allowing them to assemble better processors in the future.

What type of user will be given Iris Pro? Also, will graphics-free options be available in the sub-Enthusiast class? When buying a processor from Intel, the high-end mainstream processors tend to have GT2-class graphics, such as the Intel HD 4600. Enthusiast architectures, such as Haswell-E, cannot be used without discrete graphics -- the extra space is used for more cores, I/O lanes, or other features. As we will discuss later, Broadwell took a step into changing the availability of Iris Pro in the high-end mainstream, but it doesn't seem like Kaby Lake will make any more progress. Also, if I am interpreting the table correctly, Kaby Lake might bring iGPU-less CPUs to LGA 1151.

Keeping Your Core Regular

To the first point, Intel has been on a steady tick-tock cycle since the Pentium 4 architecture reached the 65nm process node, which was a “tick”. The “tock” came from the Conroe/Merom architecture that was branded “Core 2”. This new architecture was a severe departure from the high clock, relatively low IPC design that Netburst was built around, which instantaneously changed the processor landscape from a dominant AMD to an Intel runaway lead.

intel-tick-tock.png

After 65nm and Core 2 started the cycle, every new architecture alternated between shrinking the existing architecture to smaller transistors (tick) and creating a new design on the same fabrication process (tock). Even though Intel has been steadily increasing their R&D budget over time, which is now in the range of $10 to $12 billion USD each year, creating smaller, more intricate designs with new process nodes has been getting harder. For comparison, AMD's total revenue (not just profits) for 2014 was $5.51 billion USD.

Read on to see more about what Kaby Lake could mean for Intel and us.

Report: No Stock Cooler Bundled with Intel Skylake-K Unlocked CPUs

Subject: Processors | June 26, 2015 - 12:32 PM |
Tagged: skylake-s, Skylake-K, Intel Skylake, cpu cooler

A report from Chinese-language site XFastest contains a slide reportedly showing Intel's cooling strategy for upcoming retail HEDT (High-end Desktop) Skylake "K" processors.

skylake_k.jpg

Typically Intel CPUs (outside of the current high-end enthusiast segment on LGA2011) have been packaged with one of Intel's ubiquitous standard performance air coolers, and this move to eliminate them from future unlocked SKUs makes sense for unlocked "K" series processors. The slide indicates that a 135W solution will be recommended, even if the TDP of the processor is still in the 91-95W range. The additional headroom is certainly advisable, and arguably the stock cooler never should have been used with products like the 4770K and 4790K, which more than push the limits of the stock cooler (and often allow 90 °C at load without overclocking in my experience with these high-end chips).

Aftermarket cooling (with AIO liquid CPU coolers in particular) has been essential for maximizing the performance of an unlocked CPU all along, so this news shouldn't effect the appeal of these upcoming CPUs for those interested in the latest Intel offerings (though it won't help enhance your collection of unused stock heatsinks).