Author:
Manufacturer: Corsair

Introduction and Features

Introduction

Corsair offers a large selection of PC power supplies and today we will be taking a detailed look at their new RM850i PSU. The RMi Series includes four models: the RM650i, RM750i, RM850i, and RM1000i. As you can see in the diagram below, the RMi Series is located squarely in the middle of Corsair’s power supply lineup. Corsair currently offers thirty four different models ranging from the 350 watt VS350 all the way up to the king-of-the-hill 1,500 watt AX1500i.

2-Compare-Series.jpg

Corsair PSU Comparison

The new Corsair RMi Series power supplies are equipped with fully modular cables and optimized for very quiet operation and high efficiency. RMi Series power supplies incorporate Zero RPM Fan Mode, which means the fan does not spin until the power supply is under a moderate to heavy load. The cooling fan is custom-designed for use in PSUs to deliver low noise and high static pressure. All of the RMi Series power supplies are 80 Plus Gold certified for high efficiency.

The Corsair RMi Series is built with high-quality components, including all Japanese made electrolytic capacitors, and Corsair guarantees these PSUs to deliver clean, stable, continuous power, even at ambient temperatures up to 50°C. Each RMi Series power supply also supports Corsair’s Link software to monitor various power supply parameters and enable/disable OCP on the +12V outputs.

3-RM850i-side.jpg

RMi vs. RM Series Advantages

Corsair has incorporated a number of enhancements, which differentiate the new RMi Series from the original RM Series. Here is an overview:

•    RMi Series comes with a 7-year warranty, instead of the RM’s 5-years
•    ALL Japanese made capacitors ensure long life and best in class performance
•    RMi Series is rated for full output at 50°C, instead of 40°C
•    Fluid Dynamic Bearing fan delivers longer life than RM’s rifle-bearing fan
•    Additional Corsair Link control capabilities and features

And for all these additional features, you only pay ~$10 USD price premium!

Corsair RM850i PSU Features summary:

•    850W continuous DC output (up to 50°C)
•    7-Year Warranty and Comprehensive Customer Support
•    80 PLUS Gold certified, at least 90% efficiency under 50% load
•    Corsair Link ready for real-time monitoring and control
•    Ability to switch between single and multiple +12V rails
•    Fully modular cables for easy installation
•    Zero RPM Fan Mode for silent operation up to 40% load
•    Quiet fluid dynamic fan bearing for long life and quiet operation
•    High quality components including all Japanese electrolytic capacitors
•    Active Power Factor correction (0.99) with Universal AC input
•    Safety Protections : OCP, OVP, UVP, SCP, OTP, and OPP
•    MSRP for the RM850i : $159.99 USD

Please continue reading our review of the Corsair RM850i PSU!!!

Author:
Manufacturer: Sapphire

Fiji brings the (non-X) Fury

Last month was a big one for AMD. At E3 the company hosted its own press conference to announce the Radeon R9 300-series of graphics as well as the new family of products based on the Fiji GPU. It started with the Fury X, a flagship $650 graphics card with an integrated water cooler that was well received.  It wasn't perfect by any means, but it was a necessary move for AMD to compete with NVIDIA on the high end of the discrete graphics market.

02.jpg

At the event AMD also talked about the Radeon R9 Fury (without the X) as the version of Fiji that would be taken by board partners to add custom coolers and even PCB designs. (They also talked about the R9 Nano and a dual-GPU version of Fiji, but nothing new is available on those products yet.) The Fury, priced $100 lower than the Fury X at $549, is going back to a more classic GPU design. There is no "reference" product though, so cooler and PCB designs are going to vary from card to card. We already have two different cards in our hands that differ dramatically from one another.

The Fury cuts down the Fiji GPU a bit with fewer stream processors and texture units, but keeps most other specs the same. This includes the 4GB of HBM (high bandwidth memory), 64 ROP count and even the TDP / board power. Performance is great and it creates an interesting comparison between itself and the GeForce GTX 980 cards on the market. Let's dive into this review!

Continue reading our review of the Sapphire Radeon R9 Fury 4GB with CrossFire Results!

Author:
Manufacturer: Various

SLI and CrossFire

Last week I sat down with a set of three AMD Radeon R9 Fury X cards, our sampled review card as well as two retail cards purchased from Newegg, to see how the reports of the pump whine noise from the cards was shaping up. I'm not going to dive into that debate again here in this story as I think we have covered it pretty well thus far in that story as well as on our various podcasts, but rest assured we are continuing to look into the revisions of the Fury X to see if AMD and Cooler Master were actually able to fix the issue.

group1.jpg

What we have to cover today is something very different, and likely much more interesting for a wider range of users. When you have three AMD Fury X cards in your hands, you of course have to do some multi-GPU testing with them. With our set I was able to run both 2-Way and 3-Way CrossFire with the new AMD flagship card and compare them directly to the comparable NVIDIA offering, the GeForce GTX 980 Ti.

There isn't much else I need to do to build up this story, is there? If you are curious how well the new AMD Fury X scales in CrossFire with two and even three GPUs, this is where you'll find your answers.

Continue reading our results testing the AMD Fury X and GeForce GTX 980 Ti in 3-Way GPU configurations!!

Subject: Storage
Manufacturer: OCZ

Introduction, Specifications and Packaging

Introduction:

Since their acquisition by Toshiba in early 2014, OCZ has gradually transitioned their line of SSD products to include parts provided by their parent company. Existing products were switched over to Toshiba flash memory, and that transition went fairly smoothly, save the recent launch of their Vector 180 (which had a couple of issues noted in our review). After that release, we waited for the next release from OCZ, hoping for something fresh, and that appears to have just happened:

150707-180041.jpg

OCZ sent us a round of samples for their new OCZ Trion 100 SSD. This SSD was first teased at Computex 2015. This new model would not only use Toshiba sourced flash memory, it would also displace the OCZ / Indilinx Barefoot controller with Toshiba's own. Then named 'Alishan', this is now officially called the 'Toshiba Controller TC58'. As we found out during Computex, this controller employs Toshiba's proprietary Quadruple Swing-By Code (QSBC) error correction technology:

QSBC.png

Error correction tech gets very wordy, windy, and technical and does so very quickly, so I'll do my best to simplify things. Error correction is basically some information interleaved within the data stored on a given medium. Pretty much everything uses it in some form or another. Some Those 700MB CD-R's you used to burn could physically hold over 1GB of data, but all of that extra 'unavailable' space was error correction necessary to deal with the possible scratches and dust over time. Hard drives do the same sort of thing, with recent changes to how the data is interleaved. Early flash memory employed the same sort of simple error correction techniques initially, but advances in understanding of flash memory error modes have led to advances in flash-specific error correction techniques. More advanced algorithms require more advanced math that may not easily lend itself to hardware acceleration. Referencing the above graphic, BCH is simple to perform when needed, while LDPC is known to be more CPU (read SSD controller CPU) intensive. Toshiba's proprietary QSB tech claims to be 8x more capable of correcting errors, but what don't know what, if any, performance penalty exists on account of it.

We will revisit this topic a bit later in the review, but for now lets focus on the other things we know about the Trion 100. The easiest way to explain it is this is essentially Toshiba's answer to the Samsung EVO series of SSDs. This Toshiba flash is configured in a similar fashion, meaning the bulk of it operates in TLC mode, while a portion is segmented off and operates as a faster SLC-mode cache. Writes first go to the SLC area and are purged to TLC in the background during idle time. Continuous writes exceeding the SLC cache size will drop to the write speed of the TLC flash.

Read on for the full review!

Author:
Subject: General Tech
Manufacturer: Logitech

Logitech Focuses in on Gaming

Logitech has been around seemingly forever.  The Swiss based company is ubiquitous in the peripherals market, providing products ranging from keyboards and mice, to speakers and headsets.  There is not much that the company does not offer when it comes to PC peripherals.  Their 3 button mice back in the day were considered cutting edge that also happened to be semi-programmable.  Since that time we have seen them go from ball mice, to optical mice, to the latest laser based products that offer a tremendous amount of precision.

g230_01.jpg

Gaming has become one of the bigger movers for Logitech, and they have revamped their entire lineup as well as added a few new products to hopefully cash in on the popularity of modern gaming.  To further address this market Logitech has designed and marketed a new batch of gaming headsets.  These promise to be moderately priced, but high quality products that bear the Logitech name.  We go from the very basic up to the top 7.1 wireless products.  Originally these covered a pretty significant price range, but lately the discounts have been extremely deep.  The lowest end gaming headset is at $40US while the 7.1 wireless model comes in around $90 US. 

I am looking at two models today that span the lowest end to the 2nd highest.  The first headset is the G230 analog set.  The second is the G35 wired 7.1 USB with Dolby Headphone technology.  I have never been a fan of wireless headphones, but the G35 should be a fairly good approximation of the performance of that part.

g35_01.jpg

My goal is to look at these two wired units and see what Logitech can offer at these two very affordable price points.

Click here to read the entire Logitech G230 and G35 review!

Subject: Systems
Manufacturer: PC Perspective
Tagged: quad-core, gpu, gaming, cpu

Introduction and Test Hardware

logos.jpg

The PC gaming world has become divided by two distinct types of games: those that were designed and programmed specifically for the PC, and console ports. Unfortunately for PC gamers it seems that far too many titles are simply ported over (or at least optimized for consoles first) these days, and while PC users can usually enjoy higher detail levels and unlocked frame rates there is now the issue of processor core-count to consider. This may seem artificial, but in recent months quite a few games have been released that require at least a quad-core CPU to even run (without modifying the game).

One possible explanation for this is current console hardware: PS4 and Xbox One systems are based on multi-core AMD APUs (the 8-core AMD "Jaguar"). While a quad-core (or higher) processor might not be techincally required to run current games on PCs, the fact that these exist on consoles might help to explain quad-core CPU as a minimum spec. This trend could simply be the result of current x86 console hardware, as developement of console versions of games is often prioritized (and porting has become common for development of PC versions of games). So it is that popular dual-core processors like the $69 Intel Pentium Anniversary Edition (G3258) are suddenly less viable for a future-proofed gaming build. While hacking these games might make dual-core CPUs work, and might be the only way to get such a game to even load as the CPU is checked at launch, this is obviously far from ideal.

4790K_box.jpg

Is this much CPU really necessary?

Rather than rail against this quad-core trend and question its necessity, I decided instead to see just how much of a difference the processor alone might make with some game benchmarks. This quickly escalated into more and more system configurations as I accumulated parts, eventually arriving at 36 different configurations at various price points. Yeah, I said 36. (Remember that Budget Gaming Shootout article from last year? It's bigger than that!) Some of the charts that follow are really long (you've been warned), and there’s a lot of information to parse here. I wanted this to be as fair as possible, so there is a theme to the component selection. I started with three processors each (low, mid, and high price) from AMD and Intel, and then three graphics cards (again, low, mid, and high price) from AMD and NVIDIA.

Here’s the component rundown with current pricing*:

Processors tested:

Graphics cards tested:

  • AMD Radeon R7 260X (ASUS 2GB OC) - $137.24
  • AMD Radeon R9 280 (Sapphire Dual-X) - $169.99
  • AMD Radeon R9 290X (MSI Lightning) - $399
  • NVIDIA GeForce GTX 750 Ti (OEM) - $149.99
  • NVIDIA GeForce GTX 770 (OEM) - $235
  • NVIDIA GeForce GTX 980 (ASUS STRIX) - $519

*These prices were current as of  6/29/15, and of course fluctuate.

Continue reading our Quad-Core Gaming Roundup: How Much CPU Do You Really Need?

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Where are all the 2TB SSDs? It's a question we've been hearing since they started to go mainstream seven years ago. While we have seen a few come along on the enterprise side as far back as 2011, those were prohibitively large, expensive, and out of reach of most consumers. Part of the problem initially was one of packaging. Flash dies simply were not of sufficient data capacity (and could not be stacked in sufficient quantities) as to reach 2TB in a consumer friendly form factor. We have been getting close lately, with many consumer focused 2.5" SATA products reaching 1TB, but things stagnated there for a bit. Samsung launched their 850 EVO and Pro in capacities up to 1TB, with plenty of additional space inside the 2.5" housing, so it stood to reason that the packaging limit was no longer an issue, so why did they keep waiting?

The first answer is one of market demand. When SSDs were pushing $1/GB, the thought of a 2TB SSD was great right up to the point where you did the math and realized it would cost more than a typical enthusiast-grade PC. That was just a tough pill to swallow, and market projections showed it would take more work to produce and market the additional SKU than it would make back in profits.

The second answer is one of horsepower. No, this isn't so much a car analogy as it is simple physics. 1TB SSDs had previously been pushing the limits of controller capabilities of flash and RAM addressing, as well as handling Flash Translation Layer lookups as well as garbage collection and other duties. This means that doubling a given model SSD capacity is not as simple as doubling the amount of flash attached to the controller - that controller must be able to effectively handle twice the load.

With all of that said, it looks like we can finally stop asking for those 2TB consumer SSDs, because Samsung has decided to be the first to push into this space:

150705-191310.jpg

Today we will take a look at the freshly launched 2TB version of the Samsung 850 EVO and 850 Pro. We will put these through the same tests performed on the smaller capacity models. Our hope is to verify that the necessary changes Samsung made to the controller are sufficient to keep performance scaling or at least on-par with the 1TB and smaller models of the same product lines.

Read on for the full review!

Introduction and Technical Specifications

Introduction

In our previous article here, we demonstrated how to mod the EVGA GTX 970 SC ACX 2.0 video card to get higher performance and significantly lower running temps. Now we decided to take two of these custom modded EVGA GTX 970 cards to see how well they perform in an SLI configuration. ASUS was kind enough to supply us with one of their newly introduced ROG Enthusiast SLI Bridges for our experiments.

ASUS ROG Enthusiast SLI Bridge

02-rog-3way-adapter.jpg

Courtesy of ASUS

03-rog-adapter-profile.jpg

Courtesy of ASUS

For the purposes of running the two EVGA GTX 970 SC ACX 2.0 video cards in SLI, we chose to use the 3-way variant of ASUS' ROG Enthusiast SLI Bridge so that we could run the tests with full 16x bandwidth across both cards (with the cards in PCIe 3.0 x16 slots 1 and 3 in our test board). This customized SLI adapter features a powered red-colored ROG logo embedded in its brushed aluminum upper surface. The adapter supports 2-way and 3-way SLI in a variety of board configurations.

04-all-adapters.jpg

Courtesy of ASUS

ASUS offers their ROG Enthusiast SLI Bridge in 3 sizes for various variations on 2-way, 3-way, and 4-way SLI configurations. All bridges feature the top brushed-aluminum cap with embedded glowing ROG logo.

Continue reading our article on Modding the EVGA GTX 970 SC Graphics Card!

05-sli-config.jpg

Courtesy of ASUS

The smallest bridge supports 2-way SLI configurations with either a two or three slot separation. The middle sized bridge supports up to a 3-way SLI configuration with a two slot separation required between each card. The largest bridge support up to a 4-way SLI configuration, also requiring a two slot separation between each card used.

Technical Specifications (taken from the ASUS website)

Dimensions 2-WAY: 97 x 43 x 21 (L x W x H mm)
3-WAY: 108 x 53 x 21 (L x W x H mm)
4-WAY: 140 x 53 x 21 (L x W x H mm)
Weight 70 g (2-WAY)
91 g (3-WAY)
123 g(4-WAY)
Compatible GPU set-ups 2-WAY: 2-WAY-S & 2-WAY-M
3-WAY: 2-WAY-L & 3-WAY
4-WAY: 4-WAY
Contents 2-WAY: 1 x optional power cable & 2 PCBs included for varying configurations
3-WAY: 1 x optional power cable
4-WAY: 1 x optional power cable

Continue reading our story!!

Tick Tock Tick Tock Tick Tock Tock

A few websites have been re-reporting on a leak from BenchLife.info about Kaby Lake, which is supposedly a second 14nm redesign (“Tock”) to be injected between Skylake and Cannonlake.

UPDATE (July 2nd, 3:20pm ET): It has been pointed out that many hoaxes have come out of the same source, and that I should be more clear in my disclaimer. This is an unconfirmed, relatively easy to fake leak that does not have a second, independent source. I reported on it because (apart from being interesting enough) some details were listed on the images, but not highlighted in the leak, such as "GT0" and a lack of Iris Pro on -K. That suggests that the leaker got the images from somewhere, but didn't notice those details, which implies that the original source was hoaxed by an anonymous source, who only seeded the hoax to a single media outlet, or that it was an actual leak.

Either way, enjoy my analysis but realize that this is a single, unconfirmed source who allegedly published hoaxes in the past.

intel-2015-kaby-lake-leak-01.png

Image Credit: BenchLife.info

If true, this would be a major shift in both Intel's current roadmap as well as how they justify their research strategies. It also includes a rough stack of product categories, from 4.5W up to 91W TDPs, including their planned integrated graphics configurations. This leads to a pair of interesting stories:

How Kaby Lake could affect Intel's processors going forward. Since 2006, Intel has only budgeted a single CPU architecture redesign for any given fabrication process node. Taking two attempts on the 14nm process buys time for 10nm to become viable, but it could also give them more time to build up a better library of circuit elements, allowing them to assemble better processors in the future.

What type of user will be given Iris Pro? Also, will graphics-free options be available in the sub-Enthusiast class? When buying a processor from Intel, the high-end mainstream processors tend to have GT2-class graphics, such as the Intel HD 4600. Enthusiast architectures, such as Haswell-E, cannot be used without discrete graphics -- the extra space is used for more cores, I/O lanes, or other features. As we will discuss later, Broadwell took a step into changing the availability of Iris Pro in the high-end mainstream, but it doesn't seem like Kaby Lake will make any more progress. Also, if I am interpreting the table correctly, Kaby Lake might bring iGPU-less CPUs to LGA 1151.

Keeping Your Core Regular

To the first point, Intel has been on a steady tick-tock cycle since the Pentium 4 architecture reached the 65nm process node, which was a “tick”. The “tock” came from the Conroe/Merom architecture that was branded “Core 2”. This new architecture was a severe departure from the high clock, relatively low IPC design that Netburst was built around, which instantaneously changed the processor landscape from a dominant AMD to an Intel runaway lead.

intel-tick-tock.png

After 65nm and Core 2 started the cycle, every new architecture alternated between shrinking the existing architecture to smaller transistors (tick) and creating a new design on the same fabrication process (tock). Even though Intel has been steadily increasing their R&D budget over time, which is now in the range of $10 to $12 billion USD each year, creating smaller, more intricate designs with new process nodes has been getting harder. For comparison, AMD's total revenue (not just profits) for 2014 was $5.51 billion USD.

Read on to see more about what Kaby Lake could mean for Intel and us.

Author:
Manufacturer: AMD

Retail cards still suffer from the issue

In our review of AMD's latest flagship graphics card, the Radeon R9 Fury X, I noticed and commented on the unique sound that the card was producing during our testing. A high pitched whine, emanating from the pump of the self-contained water cooler designed by Cooler Master, was obvious from the moment our test system was powered on and remained constant during use. I talked with a couple of other reviewers about the issue before the launch of the card and it seemed that I wasn't alone. Looking around other reviews of the Fury X, most make mention of this squeal specifically.

09.jpg

Noise from graphics cards come in many forms. There is the most obvious and common noise from on-board fans and the air it moves. Less frequently, but distinctly, the sound of inductor coil whine comes up. Fan noise spikes when the GPU gets hot, causing the fans to need to spin faster and move more air across the heatsink, which keeps everything running cool. Coil whine changes pitch based on the frame rate (and the frequency of power delivery on the card) and can be alleviated by using higher quality components on the board itself.

But the sound of our Fury X was unique: it was caused by the pump itself and it was constant. The noise it produced did not change as the load on the GPU varied. It was also 'pitchy' - a whine that seemed to pierce through other sounds in the office. A close analog might be the sound of an older, CRT TV or monitor that is left powered on without input.

In our review process, AMD told us the solution was fixed. In an email sent to the media just prior to the Fury X launch, an AMD rep stated:

In regards to the “pump whine”, AMD received feedback that during open bench testing some cards emit a mild “whining” noise.  This is normal for most high speed liquid cooling pumps; Usually the end user cannot hear the noise as the pumps are installed in the chassis, and the radiator fan is louder than the pump.  Since the AMD Radeon™ R9 Fury X radiator fan is near silent, this pump noise is more noticeable.  
 
The issue is limited to a very small batch of initial production samples and we have worked with the manufacturer to improve the acoustic profile of the pump.  This problem has been resolved and a fix added to production parts and is not an issue.

I would disagree that this is "normal" but even so, taking AMD at its word, I wrote that we heard the noise but also that AMD had claimed to have addressed it. Other reviewers noted the same comment from AMD, saying the result was fixed. But very quickly after launch some users were posting videos on YouTube and on forums with the same (or worse) sounds and noise. We had already started bringing in a pair of additional Fury X retail cards from Newegg in order to do some performance testing, so it seemed like a logical next step for us to test these retail cards in terms of pump noise as well.

First, let's get the bad news out of the way: both of the retail AMD Radeon R9 Fury X cards that arrived in our offices exhibit 'worse' noise, in the form of both whining and buzzing, compared to our review sample. In this write up, I'll attempt to showcase the noise profile of the three Fury X cards in our possession, as well as how they compare to the Radeon R9 295X2 (another water cooled card) and the GeForce GTX 980 Ti reference design - added for comparison.

Continue reading our look into the pump noise of the AMD Fury X Graphics Card!

Introduction, Specifications, and Packaging

Lexar is Micron’s brand covering SD Cards, microSD Cards, USB flash drives, and card readers. Their card readers are known for being able to push high in the various speed grades, typically allowing transfers (for capable SD cards) much faster than what a typical built-in laptop or PC SD card reader is capable of. Today we will take a look at the Lexar ‘Professional Workflow’ line of flash memory connectivity options from Lexar.

150121-164114.jpg

This is essentially a four-bay hub device that can accept various card readers or other types of devices (a USB flash storage device as opposed to just a reader, for example). The available readers range from SD to CF to Professional Grade CFast cards capable of over 500 MB/sec.

We will be looking at the following items today:

  • Professional Workflow HR2
    • Four-bay Thunderbolt™ 2/USB 3.0 reader and storage drive hub
  • Professional Workflow UR1
    • Three-slot microSDHC™/microSDXC™ UHS-I USB 3.0 reader
  • Professional Workflow SR1
    • SDHC™/SDXC™ UHS-I USB 3.0 reader
  • Professional Workflow CFR1
    • CompactFlash® USB 3.0 reader
  • Professional Workflow DD256
    • 256GB USB 3.0 Storage Drive

Note that since we were sampled these items, Lexar has begun shipping a newer version of the SR1. The SR2 is a SDHC™/SDXC™ UHS-II USB 3.0 reader. Since we had no UHS-II SD cards available to test, this difference would not impact any of our testing speed results. There is also an HR1 model which has only USB 3.0 support and no Thunderbolt, coming in at a significantly lower cost when compared with the HR2 (more on that later).

Continue reading for our review of all of the above!

Subject: Displays
Manufacturer: ASUS

Introduction, Specifications, and Packaging

AMD fans have been patiently waiting for a proper FreeSync display to be released. The first round of displays using the Adaptive Sync variable refresh rate technology arrived with an ineffective or otherwise disabled overdrive feature, resulting in less than optimal pixel response times and overall visual quality, especially when operating in variable refresh rate modes. Meanwhile G-Sync users had overdrive functionality properly functioning , as well as a recently introduced 1440P IPS panel from Acer. The FreeSync camp was overdue for an IPS 1440P display superior to that first round of releases, hopefully with those overdrive issues corrected. Well it appears that ASUS, the makers of the ROG Swift, have just rectified that situation with a panel we can finally recommend to AMD users:

DSC02594.jpg

Before we get into the full review, here is a sampling of our recent display reviews from both sides of the camp:

  • ASUS PG278Q 27in TN 1440P 144Hz G-Sync
  • Acer XB270H 27in TN 1080P 144Hz G-Sync
  • Acer XB280HK 28in TN 4K 60Hz G-Sync
  • Acer XB270HU 27in IPS 1440P 144Hz G-Sync
  • LG 34UM67 34in IPS 25x18 21:9 48-75Hz FreeSync
  • BenQ XL2730Z 27in TN 1440P 40-144Hz FreeSync
  • Acer XG270HU 27in TN 1440P 40-144Hz FreeSync
  • ASUS MG279Q 27in IPS 1440P 144Hz FreeSync(35-90Hz) < You are here

The reason for there being no minimum rating on the G-Sync panels above is explained in our article 'Dissecting G-Sync and FreeSync - How the Technologies Differ', though the short version is that G-Sync can effectively remain in VRR down to <1 FPS regardless of the hardware minimum of the display panel itself.

Continue reading as we will look at this new ASUS MG279Q 27" 144Hz 1440P IPS FreeSync display!

Subject: Mobile
Manufacturer: Various

Business Model Based on Partnerships

Alexandru Voica works for Imagination Technologies. His background includes research in computer graphics at the School of Advanced Studies Sant'Anna in Pisa and a brief stint as a CPU engineer, working on several high-profile 32-bit processors used in many mobile and embedded devices today. You can follow Alex on Twitter @alexvoica.

Some months ago my colleague Rys Sommefeldt wrote an article offering his (deeply) technical perspective on how a chip gets made, from R&D to manufacturing. While his bildungsroman production covers a lot of the engineering details behind silicon production, it is light on the business side of things; and that is a good thing because it gives me opportunity to steal some of his spotlight!

This article will give you a breakdown of the IP licensing model, describing the major players and the relationships between them. It is not designed to be a complete guide by any means and some parts might already sound familiar, but I hope it is a comprehensive overview that can be used by anyone who is new to product manufacturing in general.

The diagram below offers an analysis of the main categories of companies involved in the semiconductor food chain. Although I’m going to attempt to paint a broad picture, I will mainly offer examples based on the ecosystem formed around Imagination (since that is what I know best).

01.jpg

A simplified view of the manufacturing chain

Let’s work our way from left to right.

IP vendors

Traditionally, these are the companies that design and sell silicon IP. ARM and Imagination Technologies are perhaps the most renowned for their sub-brands: Cortex CPU + Mali GPU and MIPS CPU + PowerVR GPU, respectively.

Given the rapid evolution of the semiconductor market, such companies continue to evolve their business models beyond point solutions to become one-stop shops that offer more than for a wide variety of IP cores and platforms, comprising CPUs, graphics, video, connectivity, cloud software and more.

Continue reading The IP licensing business model. A love story. on PC Perspective!!

Author:
Manufacturer: Seasonic

Introduction and Features

2-SnowSilent-Banner.jpg

It’s always a happy day at the PC Perspective Test Lab when the delivery truck drops off a new Seasonic power supply for evaluation! Seasonic is a well-known and highly respected OEM that produces some of the best PC power supplies on the market today. In addition to building power supplies for many big-name companies who re-brand the units with their own name, Seasonic also sells a full line of power supplies under the Seasonic name. Their new Snow Silent Series now includes two models, the original 1050W and the new 750W version we have up for review.

The Snow Silent Series power supplies feature a stylish white exterior along with top level Seasonic build quality. The Snow Silent-750 is a next generation XP-Series (XP2S) power supply that comes with fully modular cables and a 120mm cooling fan with Fluid Dynamic Bearings. It features an upgraded S3FC Hybrid Fan Control Circuit that provides fanless operation up to ~50% load. The Snow Silent-750 is designed to provide high efficiency (80 Plus Platinum certified) and tight voltage regulation with minimal AC ripple.

3-SS-750-side.jpg

Seasonic Snow Silent 750W PSU Key Features:

•    High efficiency, 80 Plus Platinum certified
•    Fully Modular Cable design with flat ribbon-style cables
•    Seasonic Patented DC Connector Panel with integrated VRMs
•    Upgraded Hybrid Silent Fan Control (S3FC: Fanless, Silent and Cooling)
•    120mm Fan with Fluid Dynamic Bearings (FDB)
•    Ultra-tight voltage regulation (+2% and -0% +12V rail)
•    Supports multi-GPU technologies (four PCI-E 6+2 p connectors)
•    High reliability 105°C Japanese made electrolytic capacitors
•    Active PFC (0.99 PF typical) with Universal AC input
•    Dual sided PCB layout with dual copper bars
•    Energy Star and ErP Lot 6 2013 compliance
•    7-Year manufacturer's warranty worldwide

Please continue reading our Seasonic Snow Silent-750 power supply review!

Subject: Systems
Manufacturer: Zotac

Introduction and First Impressions

The Zotac ZBOX CI321 nano is a mini PC kit in the vein of the Intel NUC, and this version features a completely fanless design with built-in wireless for silent integration into just about any location. So is it fast enough to be an HTPC or desktop productivity machine? We will find out here.

zbox_main.jpg

I have reviewed a couple of mini-PCs in the past few months, most recently the ECS LIVA X back in January. Though the LIVA X was not really fast enough to be used as a primary device it was small and inexpensive enough to be an viable product depending on a user’s needs. One attractive aspect of the LIVA designs, and any of the low-power computers introduced recently, is the passive nature of such systems. This has unfortunately resulted in the integration of some pretty low-performance CPUs to stay within thermal (and cost) limits, but this is beginning to change. The ZBOX nano we’re looking at today carries on the recent trend of incorporating slightly higher performance parts as its Intel Celeron processor (the 2961Y) is based on Haswell, and not the Atom cores at the heart of so many of these small systems.

Another parallel to the Intel NUC is the requirement to bring your own memory and storage, and the ZBOX CI321 nano accepts a pair of DDR3 SoDIMMs and 2.5” storage drives. The Intel Celeron 2961Y processor supports up to 1600 MHz dual-channel DDR3L which allows for much higher memory bandwidth than many other mini-PCs, and the storage controller supports SATA 6.0 Gbps which allows for higher performance than the eMMC storage found in a lot of mini-PCs, depending on the drive you choose to install. Of course your mileage will vary depending on the components selected to complete the build, but it shouldn’t be difficult to build a reasonably fast system.

zbox_back_angle.jpg

Continue reading our review of the Zotac ZBOX CI321 nano!!

Author:
Manufacturer: AMD
Tagged: 4GB, amd, Fiji, Fury, fury x, hbm, R9, radeon

A fury unlike any other...

Officially unveiled by AMD during E3 last week, we are finally ready to show you our review of the brand new Radeon R9 Fury X graphics card. Very few times has a product launch meant more to a company, and to its industry, than the Fury X does this summer. AMD has been lagging behind in the highest-tiers of the graphics card market for a full generation. They were depending on the 2-year-old Hawaii GPU to hold its own against a continuous barrage of products from NVIDIA. The R9 290X, despite using more power, was able to keep up through the GTX 700-series days, but the release of NVIDIA's Maxwell architecture forced AMD to move the R9 200-series parts into the sub-$350 field. This is well below the selling prices of NVIDIA's top cards.

IMG_2628.JPG

The AMD Fury X hopes to change that with a price tag of $650 and a host of new features and performance capabilities. It aims to once again put AMD's Radeon line in the same discussion with enthusiasts as the GeForce series.

The Fury X is built on the new AMD Fiji GPU, an evolutionary part based on AMD's GCN (Graphics Core Next) architecture. This design adds a lot of compute horsepower (4,096 stream processors) and it also is the first consumer product to integrate HBM (High Bandwidth Memory) support with a 4096-bit memory bus!

Of course the question is: what does this mean for you, the gamer? Is it time to start making a place in your PC for the Fury X? Let's find out.

Continue reading our review of the new AMD Radeon R9 Fury X Graphics Card!!

Manufacturer: Inateck

One hub to rule them all!

Inateck sent along a small group of connectivity devices for us to evaluate. One such item was their HB7003 7 port USB 3.0 hub:

DSC02348.jpg

This is a fairly standard powered USB hub with one exception - high speed charging. Thanks to an included 36W power adapter and support for Battery Charging Specification 1.2, the HB7003 can charge devices at up to 1.5 Amps at 5 Volts. This is not to be confused with 'Quick Charging', which uses a newer specification and more unique hardware.

Specifications:

  • L/W/H: 6.06" x 1.97" x 0.83"
  • Ports: 7
  • Speed: USB 3.0 5Gbps (backwards compatible with USB 2.0 and 1.1)
  • Windows Vista / OSX 10.8.4 and newer supported without drivers

Packaging:

DSC02346.jpg

Densely packed brown box. Exactly how such a product should be packaged.

DSC02347.jpg

Power adapter (~6 foot cord), ~4.5 foot USB 3.0 cord, instruction manual, and the hub itself.

Charging:

Some quick charging tests revealed that the HB7003 had no issue exceeding 1.0 Amp charging rates, but fell slightly short of a full 1.5A charge rate due to the output voltage falling a little below the full 5V. Some voltage droop is common with this sort of device, but it did have some effect. In one example, an iPad Air drew 1.3A (13% short of a full 1.5A). Not a bad charging rate considering, but if you are expecting a fast charge of something like an iPad, its dedicated 2.1A charger is obviously the better way to go.

Performance and Usability:

DSC02519.jpg

As you can see above, even though the port layout is on a horizontal plane, Inateck has spaced the ports enough that most devices should be able to sit side by side. Some wider devices may take up an extra port, but with seven to work with, the majority of users should have enough available ports even if one or two devices overlap an adjacent port. In the above configuration, we had no issue saturating the throughput to each connected device. I also stepped up to a Samsung USB T1 which also negotiated at the expected USB 3.0 speeds.

Pricing and Availability

Inateck is selling it these direct from their Amazon store (link above).

Conclusion:

Pros:

  • Clean design 7-port USB 3.0 hub.
  • Port spacing sufficient for most devices without interference.
  • 1.5A per port charging.
  • Low cost.

Cons:

  • 'Wall wart' power adapter may block additional power strip outlets.

At just $35, the Inateck HB7003 is a good quality 7-port USB 3.0 hub. All ports can charge devices at up to 1.5A while connecting them to the host at data rates up to 5 Gbps. The only gripe I had was that the hub was a bit on the light weight side and as a result it easily slid around on the desk when the attached cords were disturbed, but some travelers might see light weight as a bonus. Overall this is a simple, no frills USB 3.0 hub that gets the job done nicely.

Author:
Subject: Processors, Mobile
Manufacturer: Qualcomm

Qualcomm’s GPU History

Despite its market dominance, Qualcomm may be one of the least known contenders in the battle for the mobile space. While players like Apple, Samsung, and even NVIDIA are often cited as the most exciting and most revolutionary, none come close to the sheer sales, breadth of technology, and market share that Qualcomm occupies. Brands like Krait and Snapdragon have helped push the company into the top 3 semiconductor companies in the world, following only Intel and Samsung.

Founded in July 1985, seven industry veterans came together in the den of Dr. Irwin Jacobs’ San Diego home to discuss an idea. They wanted to build “Quality Communications” (thus the name Qualcomm) and outlined a plan that evolved into one of the telecommunications industry’s great start-up success stories.

Though Qualcomm sold its own handset business to Kyocera in 1999, many of today’s most popular mobile devices are powered by Qualcomm’s Snapdragon mobile chipsets with integrated CPU, GPU, DSP, multimedia CODECs, power management, baseband logic and more.  In fact the typical “chipset” from Qualcomm encompasses up to 20 different chips of different functions besides just the main application processor. If you are an owner of a Galaxy Note 4, Motorola Droid Turbo, Nexus 6, or Samsung Galaxy S5, then you are most likely a user of one of Qualcomm’s Snapdragon chipsets.

qc-2.jpg

Qualcomm’s GPU History

Before 2006, the mobile GPU as we know it today was largely unnecessary. Feature phones and “dumb” phones were still the large majority of the market with smartphones and mobile tablets still in the early stages of development. At this point all the visual data being presented on the screen, whether on a small monochrome screen or with the color of a PDA, was being drawn through a software renderer running on traditional CPU cores.

But by 2007, the first fixed-function, OpenGL ES 1.0 class of GPUs started shipping in mobile devices. These dedicated graphics processors were originally focused on drawing and updating the user interface on smartphones and personal data devices. Eventually these graphics units were used for what would be considered the most basic gaming tasks.

Continue reading Qualcomm History and its GPU (R)evolution.

Author:
Manufacturer: Sapphire

The new Radeon R9 300-series

The new AMD Radeon R9 and R7 300-series of graphics cards are coming into the world with a rocky start. We have seen rumors and speculation about what GPUs are going to be included, what changes would be made and what prices these would be shipping at for what seems like months, and in truth it has been months. AMD's Radeon R9 290 and R9 290X based on the new Hawaii GPU launched nearly 2 years ago, while the rest of the 200-series lineup was mostly a transition of existing products in the HD 7000-family. The lone exception was the Radeon R9 285, a card based on a mysterious new GPU called Tonga that showed up late to the game to fill a gap in the performance and pricing window for AMD.

AMD's R9 300-series, and the R7 300-series in particular, follows a very similar path. The R9 390 and R9 390X are still based on the Hawaii architecture. Tahiti is finally retired and put to pasture, though Tonga lives on as the Radeon R9 380. Below that you have the Radeon R7 370 and 360, the former based on the aging GCN 1.0 Curacao GPU and the latter based on Bonaire. On the surface its easy to refer to these cards with the dreaded "R-word"...rebrands. And though that seems to be the case there are some interesting performance changes, at least at the high end of this stack, that warrant discussion.

DSC02524.jpg

And of course, AMD partners like Sapphire are using this opportunity of familiarity with the GPU and its properties to release newer product stacks. In this case Sapphire is launching the new Nitro brand for a series of cards that it is aimed at what it considers the most common type of gamer: one that is cost conscious and craves performance over everything else.

The result is a stack of GPUs with prices ranging from about $110 up to ~$400 that target the "gamer" group of GPU buyers without the added price tag that some other lines include. Obviously it seems a little crazy to be talking about a line of graphics cards that is built for gamers (aren't they all??) but the emphasis is to build a fast card that is cool and quiet without the additional cost of overly glamorous coolers, LEDs or dip switches.

Today I am taking a look at the new Sapphire Nitro R9 390 8GB card, but before we dive head first into that card and its performance, let's first go over the changes to the R9-level of AMD's product stack.

Continue reading our review of the Sapphire Nitro R9 390 8GB Graphics Card!!

Author:
Manufacturer: AMD

Fiji: A Big and Necessary Jump

Fiji has been one of the worst kept secrets in a while.  The chip has been talked about, written about, and rumored about seemingly for ages.  The chip has promised to take on NVIDIA at the high end by bringing about multiple design decisions that are aimed to give it a tremendous leap in performance and efficiency as compared to previous GCN architectures.  NVIDIA released their Maxwell based products last year and added to that this year with the Titan X and the GTX 980 Ti.  These are the parts that Fiji is aimed to compete with.

fiji_01.jpg

The first product that Fiji will power is the R9 Fury X with integrated water cooling.

AMD has not been standing still, but their R&D budgets have been taking a hit as of late.  The workforce has also been pared down to the bare minimum (or so I hope) while still being able to design, market, and sell products to the industry.  This has affected their ability to produce as large a quantity of new chips as NVIDIA has in the past year.  Cut-backs are likely not the entirety of the story, but they have certainly affected it.

The plan at AMD seems to be to focus on very important products and technologies, and then migrate those technologies to new products and lines when it makes the most sense.  Last year we saw the introduction of “Tonga” which was the first major redesign after the release of the GCN 1.1 based Hawaii which powers the R9 290 and R9 390 series.  Tonga delivered double the tessellation performance over Hawaii, it improved overall architecture efficiency, and allowed AMD to replace the older Tahiti and Pitcairn chips with an updated unit that featured xDMA and TrueAudio support.  Tonga was a necessary building block that allowed AMD to produce a chip like Fiji.

Click here to read about the AMD Fiji GPU!