Author:
Subject: General Tech
Manufacturer: Lenovo

A Very Familiar Look and Feel

Released alongside the launch of Windows 8 in October 2012, the original Lenovo IdeaPad Yoga 13 was a revolutionary device. While Microsoft's initial vision for a touch-enabled Windows may have not panned out exactly as they wanted it to, people still found utility in 2-in-1 devices like the Yoga. In the proceeding years, similar devices from companies like HP and Dell have arose, but consumers ultimately migrated towards Lenovo's offerings.

The Yoga line has seen several drastic changes since it's inception in 2012. Industrial design changes like the Watchband Hinge introduced in the Yoga 3 Pro, and the spinning off of Yoga out of the IdeaPad brand into it's own family this generation with the Yoga 900 point towards the longevity of this 2-in-1 design.

IMG_4505.JPG

Today we are taking a look at the most affordable option in the Yoga family, the Lenovo Yoga 700.

Continue reading our review of the Lenovo Yoga 700!

Author:
Subject: Mobile
Manufacturer: MSI

27 notebooks can't be wrong

A month or so back, I had a friend come to me asking for advice on which gaming notebook he should purchase. He had specific needs that were tailored to a portable gaming machine: he wanted to have a single machine for home and mobile use, he wanted to be able to game while traveling and he had a pretty reasonable budget. As the "guy that runs the gaming hardware website" I was expected to have an answer...immediately. But I didn't. As it turns out, dissecting and digesting the gaming notebook field is pretty complex.

I sent a note to MSI, offering to build a video and a short story around its products if they sent me one of each of line of gaming notebooks they sold. Honestly, I didn't expect them to be able to pull it together, but just a couple of weeks later, a handful of large boxes arrived and we were staring at a set of six powerful gaming notebooks to analyze. 

  GE62 Apache Pro-014 GS40 Phantom-001 GS60 Ghost Pro-002 GS72 Stealth Pro 4K-202 GT72S Dominator Pro G-220 GT80S Titan SLI-002
MSRP $1299 $1599 $1699 $2149 $2599 $3399
Screen 15.6-in 1080p 14-in 1080p 15.6-in 1080p 17.3-in 4K 17.3-in 1080p G-Sync 18.4-in 1080p
CPU Core i7-6700HQ Core i7-6700HQ Core i7-6700HQ Core i7-6700HQ Core i7-6820HK Core i7-6820HK
GPU GTX 960M 2GB GTX 970M 3GB GTX 970M 6GB GTX 970M 3GB GTX 980M 8GB GTX 980M 8GB SLI
RAM 16GB 16GB 16GB 16GB 32GB 24GB
Storage 128GB M.2 SATA
1TB HDD
128GB PCIE SSD
1TB HDD
128GB PCIE SSD
1TB HDD
256GB PCIE SSD
1TB HDD
256GB PCIE RAID SSD
1TB HDD
256GB PCIE RAID SSD
1TB HDD
Optical DVD Super-multi None None None Blu-ray Burner Blu-ray Burner
Display Output HDMI 1.4
mini-DisplayPort 1.2
HDMI 1.4
mini-DisplayPort 1.2
HDMI 1.4
mini-DisplayPort 1.2
HDMI 1.4
mini-DisplayPort 1.2
HDMI 1.4
mini-DisplayPort 1.2
HDMI 1.4
mini-DisplayPort 1.2
Connectivity USB 3.1 Type-C
USB 3.0 x 2
USB 2.0 x 1
Super Port
USB 3.0 x 2
Thunderbolt
USB 3.0 x 2
USB 3.1 x 2
USB 3.0 x 2 
Thunderbolt
USB 3.0 x 6
Thunderbolt
USB 3.0 x 5
Dimensions 15.07-in x 10.23-in x 1.06-in 13.58-in x 9.65-in x 0.87-in 15.35-in x 10.47-in x 0.78-in 16.47-in x 11.39-in x 0.78-in 16.85-in x 11.57-in x 1.89-in 17.95-in x 13.02-in x 1.93-in
Weight 5.29 pounds 3.75 pounds 4.2 pounds 5.7 pounds 8.4 pounds 9.9 pounds

MSI sent this collection along as it appears to match closely with entire range of available options in its own gaming notebook line, without actually sending us ALL 27 OF THE AVAILABLE SKUs! Yes, twenty-seven.

03_1.jpg

MSI GS40 Phantom

In the video below, I'll walk through the discussion of each of the series of notebooks that MSI offers for gamers, what the prevailing characteristics are for each and what kind of consumer should be most interested in it. I also discuss the specifics of each of the models we received for the project as well as getting into the performance deltas between them.

02_1.jpg

MSI GS72 Stealth Pro 4K

  • MSI GE Series
    • $1099-$1499
    • The entry level of gaming notebooks, available in both 15.6 and 17.3-in 1080p screens, limited to GTX 970M or GTX 960M GPUs. You still get 16GB of memory, SSDs in MOST systems, Killer Networking hardware, Steel Series keyboards and weights range from 5.29 to 5.95 pounds.
  • MSI GS Series
    • $1499-2149
    • Varies in screen size from 14-in to 17.3-in but the focus here is on slimmer designs. Both 1080p and 4K screens are available, though you are still maxing out at a GTX 970M graphics solution. 16GB of RAM, NVMe PCIe SSDs are standard, with available models as thin as 0.78-inches and as light as 3.75 pounds.
  • MSI GT72 Series
    • $1599-3499
    • These focus on performance per dollar, getting maximum single GPU performance in the chassis. They all have 17-in screens with available G-Sync integration, and GPUs from the GTX 970M to the GTX 980 (full). 16-32GB of memory, all using SSDs, optical drives, Thunderbolt, six USB 3.0 ports but GT72 systems are bigger and heavier to compensate for all this.
  • MSI GT80 Series
    • $2799-4799
    • These are for the crazy enthusiasts only, all of which include SLI configurations or GTX 970M, 980M or 980. An 18.3-in 1080p screen is the only option for your display, but you get 16-64GB of memory, RAID enabled SSD configurations, Blu-ray burners, Thunderbolt, five USB 3.0 ports and a friggin Cherry Brown mechanical keyboard!

msiperf3.png

After going through this project, here are a few recommendations I would have for users looking to pick up an MSI gaming notebook.

  • Best Gaming Value
    • GT72 Dominator G-831 - This combines the larger form factor with a GTX 970M GPU, 17.3-in 1080p screen, 16GB of memory, 128GB SSD and priced at $1599. I think this is a good balance of cost and GPU horsepower.
  • Looking for a Slimmer Design
    • GS70 Stealth Pro-006 - For $1699 you lose the optical drive from the above GT72, but get a lighter and thinner design. You have the same technical horsepower, GTX 970M, Core i7 processor, etc., but the integrated fans will likely be noticeably louder to expel the heat from the more narrow chassis.
  • If you need more performance
    • GT72 Dominator Pro G-034 - With a jump from the $1599 GT72 above to $2099, this model gets you a GTX 980M and a 256GB SSD. Based on the performance metrics I ran, that should net you another 40-50% of GPU horsepower.

Let me know if you have any questions or comments about these machines and I'll do my best to answer them!

Author:
Manufacturer: Phanteks

Introduction, Features and Specifications

Introduction

Phanteks currently sells cases, CPU coolers, cooling fans, and PC accessories. They recently added the Eclipse Series to their case lineup, which includes two models, the Eclipse P400 and the Eclipse P400S (silent edition). Both the P400 and P400S are available with black, white, or gray finishes and can be purchased with or without a side window. We will be taking a detailed look at the Phanteks Eclipse P400S ATX mid-tower, closed-panel case (no side window) in this review.

2-3xP400S.jpg

Phanteks Eclipse P400S Silent Edition ATX Mid-Tower Case
Satin Black, Glacier White, or Anthracite Gray
with, or without a side window

The Eclipse P400S silent edition case comes with an integrated 3-speed fan controller and two quiet 120mm fans (one intake and one exhaust). The P400S incorporates sound dampening panels on the front, top and both sides. And in addition to quiet cooling, the Eclipse P400 and P400S cases feature selectable, 10-color RGB LED lights at the bottom of the front panel for some interesting lighting effects. Two internal 2.5” SSD bays and two internal 3.5” HDD bays are included but there are no 5.25” external drive bays.

3-side-open.jpg

Phanteks Eclipse P400S ATX Mid-Tower Case Key Features:
•    Mid-Tower ATX enclosure (WxHxD, 210x465x470mm, 8.3x18.3x18.5”)
•    Supports E-ATX, ATX, Micro-ATX and Mini-ITX motherboards
•    Very quiet case for noise sensitive applications
•    Sound dampening panels on front, sides, and top
•    Easily removed dust filters on front, top and bottom panels
•    Two included case fans (120mm intake and 120mm exhaust)
•    Three-speed fan controller included
•    (2) USB 3.0, mic and headphone jacks on the top I/O panel
•    Two internal 3.5” HDD / 2.5” SSD trays
•    Two internal 2.5” SSD mounting brackets behind mobo tray
•    Tool-free mounting for 3.5” HDDs
•    Up to 395mm (15.2”) for long graphic cards
•    Up to 280mm (11.0”) clearance (with optional 3.5” HDD cages installed)
•    Up to 160mm (6.3”) of space for tall CPU coolers
•    Price: $79.99 USD

Please continue reading our Phanteks Eclipse P400S case review!!!

Subject: General Tech
Manufacturer: Edifier

Introduction and First Impressions

Edifier might not be a household name, but the maker of speakers and headphones has been around for 20 years now; formed in 1996 in Beijing, China. More recently (2011), Edifier made news by purchasing Stax, the famous Japanese electrostatic headphone maker. This move was made to 'improve Edifier's position' in the headphone market, and with the Stax name attached it could only raise awareness for the brand in the high-end audio community.

DSC_1048.jpg

But Edifier does not play in the same market as Stax, whose least expensive current offering (the SR-003MK2) is still $350. Edifier's products range from earbuds starting at $19 (the H210) to their larger over-ear headphones (H850) at $79. In between rests the smaller over-ear H840, a closed-back monitor headphone 'tuned by Phil Jones of Pure Sound' that Edifier claims offers a 'natural' audio experience. The price? MSRP is $59.99 but Edifier sells the H840 for only $39.99 on Amazon.

"Developed with an electro-acoustic unit on the basis of the coil, these Hi-Fi headphones provide life like sound. The carefully calibrated balance between treble and bass makes Edifier H840 the perfect entry level monitor earphones."

At the price, these could be a compelling option for music, movies, and gaming - depending on how they sound. In this review I'll attempt to describe my experience with these headphones, as well as one can using text. (I will also attempt not to write a book in the process!)

DSC_1049-2.jpg

Continue reading our review of Edifier's H840 Hi-Fi Monitor Headphones!!

Manufacturer: VIVO

Introduction and First Impressions

Today we’re looking at an enclosure from VIVO, a new company on the scene who has created their new Titan mid-tower enclosure to enter the enthusiast case market. We’ll see how it stacks up in an already crowded market.

DSC_0915.jpg

A search on Amazon for enclosures will turn up the usual suspects, from Antec to Thermaltake (with BitFenix, Corsair, In Win, NZXT, Lian Li, Phanteks, SilverStone, and others in between). And right there in those search results is VIVO. Their Athena mid-tower is a nice-looking budget enclosure that sells for only $54.99, and with the Titan VIVO offering a more understated design, and some modern conveniences.

The Titan is spacious, with an open internal layout that places drive storage behind and below the motherboard tray, a common trend (Corsair’s Carbide 400C and the NZXT H440 have similar layouts). The cost of such a design (as with the aforementioned competitors) is a reduction in drive support, as only two 3.5-inch and a single 2.5-inch drive bay are included (with support for an addition pair of SSDs inside the case). This trend has its detractors, to be sure, but if your needs are limited to an SSD and a pair of hard drives, you’ll be just fine - and the Titan offers a pair of 5.25-inch bays, if desired.

DSC_0920.jpg

Continue reading our review of the VIVO Titan enclosure!!

Manufacturer: NVIDIA

93% of a GP100 at least...

NVIDIA has announced the Tesla P100, the company's newest (and most powerful) accelerator for HPC. Based on the Pascal GP100 GPU, the Tesla P100 is built on 16nm FinFET and uses HBM2.

nvidia-2016-gtc-pascal-banner.png

NVIDIA provided a comparison table, which we added what we know about a full GP100 to:

  Tesla K40 Tesla M40 Tesla P100 Full GP100
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) GP100 (Pascal)
SMs 15 24 56 60
TPCs 15 24 28 (30?)
FP32 CUDA Cores / SM 192 128 64 64
FP32 CUDA Cores / GPU 2880 3072 3584 3840
FP64 CUDA Cores / SM 64 4 32 32
FP64 CUDA Cores / GPU 960 96 1792 1920
Base Clock 745 MHz 948 MHz 1328 MHz TBD
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz TBD
FP64 GFLOPS 1680 213 5304 TBD
Texture Units 240 192 224 240
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2
Memory Size Up to 12 GB Up to 24 GB 16 GB TBD
L2 Cache Size 1536 KB 3072 KB 4096 KB TBD
Register File Size / SM 256 KB 256 KB 256 KB 256 KB
Register File Size / GPU 3840 KB 6144 KB 14336 KB 15360 KB
TDP 235 W 250 W 300 W TBD
Transistors 7.1 billion 8 billion 15.3 billion 15.3 billion
GPU Die Size 551 mm2 601 mm2 610 mm2 610mm2
Manufacturing Process 28 nm 28 nm 16 nm 16nm

This table is designed for developers that are interested in GPU compute, so a few variables (like ROPs) are still unknown, but it still gives us a huge insight into the “big Pascal” architecture. The jump to 16nm allows for about twice the number of transistors, 15.3 billion, up from 8 billion with GM200, with roughly the same die area, 610 mm2, up from 601 mm2.

nvidia-2016-gp100_block_diagram-1-624x368.png

A full GP100 processor will have 60 shader modules, compared to GM200's 24, although Pascal stores half of the shaders per SM. The GP100 part that is listed in the table above is actually partially disabled, cutting off four of the sixty total. This leads to 3584 single-precision (32-bit) CUDA cores, which is up from 3072 in GM200. (The full GP100 architecture will have 3840 of these FP32 CUDA cores -- but we don't know when or where we'll see that.) The base clock is also significantly higher than Maxwell, 1328 MHz versus ~1000 MHz for the Titan X and 980 Ti, although Ryan has overclocked those GPUs to ~1390 MHz with relative ease. This is interesting, because even though 10.6 TeraFLOPs is amazing, it's only about 20% more than what GM200 could pull off with an overclock.

Continue reading our preview of the NVIDIA Pascal architecture!!

Subject: General Tech
Manufacturer: HTC

Introduction and Background

Introduction

VR is rapidly gaining steam lately with the recent launch of several capable platforms. I’ve briefly sampled the various iterations of development kits and pre-release units coming through our office, and understanding how they tracked the headset position was relatively easy. Then we got to play with an HTC Vive, and things got a bit more interesting. The Vive is a ‘whole room’ VR experience. You’re not sitting at a desk with a game controller. Instead, you are holding a pair of controllers that behave more like extensions of yourself (once you get used to them, that is). Making all of this work took some extra pieces included with the kit, and the electronics technician in me was dying to know just what made this thing tick. I’d imagine other readers of this site might feel the same, so I thought it appropriate to do some digging and report my findings here.

Before diving straight into the HTC Vive, a brief history lesson of game system positional tracking is in order.

160405-111847.jpg

I'll start with the Wii Remote controllers, which had a front mounted IR camera that ‘saw’ a pair of IR LED banks mounted in the ‘Sensor Bar’ – an ironic naming as the ‘sensor’ was actually in the Remotes. This setup lets you point a Wii Remote at the television and use it as a mouse. Due to the limited number of points in use, the system could not tell the Wii Remote location within the room. Instead, it could only get a vector relative to the Sensor Bar itself. Wii Remotes also contained accelerometers, but those were typically not used to assist in the accuracy of the pointing (but were used to determine if the remote was inverted, as the Sensor Bar had only two light sources).

160405-120039.jpg

The Oculus Rift was essentially a reversing of the technology used in the old Nintendo Wii Remotes. The headset position and orientation are determined by a desk-mounted IR camera which ‘looks’ at IR LEDs mounted to the headset. The system dubbed ‘Constellation’, can decode the pattern (seen faintly in the above photo) and determine the headset position and orientation in space.

160405-120435.jpg

Even the sides and rear of the headset have a specific LED pattern to help the camera lock on to someone looking away from it. If the IR camera sees the triangular pattern on the headset strap, it can conclude that the viewer us looking behind them.

IMG_4495.jpg

The HTC Vive takes a different approach here. Since it was launching with a headset and two controllers that would all need to be tracked in space simultaneously. The Wii Remote style idea would only work with a much larger grid of sensor bars (or QR codes) peppered all over the room, so that idea was out. The Rift’s constellation system might have a hard time identifying unique light patterns on multiple devices that could be far away and possibly occluding each other. So if having cameras on the headset and controllers is out, and having a camera on the desk is out, what’s left?

Read on for our in-depth look at the HTC Vive Lighthouse Tracking System

Author:
Manufacturer: HTC

Why things are different in VR performance testing

It has been an interesting past several weeks and I find myself in an interesting spot. Clearly, and without a shred of doubt, virtual reality, more than any other gaming platform that has come before it, needs an accurate measure of performance and experience. With traditional PC gaming, if you dropped a couple of frames, or saw a slightly out of sync animation, you might notice and get annoyed. But in VR, with a head-mounted display just inches from your face taking up your entire field of view, a hitch in frame or a stutter in motion can completely ruin the immersive experience that the game developer is aiming to provide. Even worse, it could cause dizziness, nausea and define your VR experience negatively, likely killing the excitement of the platform.

pic-hmd1.jpg

My conundrum, and the one that I think most of our industry rests in, is that we don’t yet have the tools and ability to properly quantify the performance of VR. In a market and a platform that so desperately needs to get this RIGHT, we are at a point where we are just trying to get it AT ALL. I have read and seen some other glances at performance of VR headsets like the Oculus Rift and the HTC Vive released today, but honest all are missing the mark at some level. Using tools built for traditional PC gaming environments just doesn’t work, and experiential reviews talk about what the gamer can expect to “feel” but lack the data and analysis to back it up and to help point the industry in the right direction to improve in the long run.

With final hardware from both Oculus and HTC / Valve in my hands for the last three weeks, I have, with the help of Ken and Allyn, been diving into the important question of HOW do we properly test VR? I will be upfront: we don’t have a final answer yet. But we have a direction. And we have some interesting results to show you that should prove we are on the right track. But we’ll need help from the likes of Valve, Oculus, AMD, NVIDIA, Intel and Microsoft to get it right. Based on a lot of discussion I’ve had in just the last 2-3 days, I think we are moving in the correct direction.

Why things are different in VR performance testing

So why don’t our existing tools work for testing performance in VR? Things like Fraps, Frame Rating and FCAT have revolutionized performance evaluation for PCs – so why not VR? The short answer is that the gaming pipeline changes in VR with the introduction of two new SDKs: Oculus and OpenVR.

Though both have differences, the key is that they are intercepting the draw ability from the GPU to the screen. When you attach an Oculus Rift or an HTC Vive to your PC it does not show up as a display in your system; this is a change from the first developer kits from Oculus years ago. Now they are driven by what’s known as “direct mode.” This mode offers improved user experiences and the ability for the Oculus an OpenVR systems to help with quite a bit of functionality for game developers. It also means there are actions being taken on the rendered frames after we can last monitor them. At least for today.

Continue reading our experience in benchmarking VR games!!

Manufacturer: Thermaltake

Introduction and Technical Specifications

Introduction

In this follow-up discussion on Thermaltake's Core X9 E-ATX Cube Chassis, we look at advanced setup and configuration features, and just how much stuff you can cram into this massive case. For an in-depth overview of the case and a walk through of its features, please see our original review of the case here.

02-case-profile-filled_0.jpg

Courtesy of Thermaltake

The Thermaltake Core X9 E-ATX Cube Chassis is one of the largest and most configurable they've developed. The case is roughly cube shaped with a steel and plastic construction. The height and depth of the unit allows the Core X9 to support up to quad-fan radiators mounted to its top or sides and up to a tri-fan radiator in front. At an MSRP of $169.99, the Core X9 E-ATX Cube Chassis features a competitive price in light of its size and configurability.

03-radiator-support.jpg

Courtesy of Thermaltake

04-fan-support.jpg

Courtesy of Thermaltake

The Core X9 case was designed to be fully modular, supporting a variety of build configurations to be able to adapt to the whatever build style the end user can dream up. The case comes with a variety of mounts for mounting fans or liquid cooling radiators to the top, side, or bottom of the case. Until you can accurately visually just how many radiators and fans that this case supports, you really don't have a feel for the immense size of the Core X9. From front to back, the case support 4 x 120mm fans or a 480mm radiator along either of its lower sides or in the dual top mounts. On top, you can actually mount a total of eight 120mm fans or dual 480mm radiators if you so choose. And that doesn't take into account the additional two 140mm fans that can be mounted in the upper and lower sections of the case's rear panel, nor the three 120mm fans, dual 200mm fans, or 360mm radiator that can be mounted to the case's front panel.

Continue reading our review of the Thermaltake Core X9 Cube chassis!

Author:
Subject: Editorial, Mobile
Manufacturer: Samsung

Hardware Experience

Seeing Ryan transition from being a long-time Android user over to iOS late last year has had me thinking. While I've had hands on with flagship phones from many manufacturers since then, I haven't actually carried an Android device with me since the Nexus S (eventually, with the 4.0 Ice Cream Sandwich upgrade). Maybe it was time to go back in order to gain a more informed perspective of the mobile device market as it stands today.

IMG_4464.JPG

So that's exactly what I did. When we received our Samsung Galaxy S7 review unit (full review coming soon, I promise!), I decided to go ahead and put a real effort forth into using Android for an extended period of time.

Full disclosure, I am still carrying my iPhone with me since we received a T-Mobile locked unit, and my personal number is on Verizon. However, I have been using the S7 for everything but phone calls, and the occasional text message to people who only has my iPhone number.

Now one of the questions you might be asking yourself right now is why did I choose the Galaxy S7 of all devices to make this transition with. Most Android aficionados would probably insist that I chose a Nexus device to get the best experience and one that Google intends to provide when developing Android. While these people aren't wrong, I decided that I wanted to go with a more popular device as opposed to the more niche Nexus line.

Whether you Samsung's approach or not, the fact is that they sell more Android devices than anyone else and the Galaxy S7 will be their flagship offering for the next year or so.

Continue reading our editorial on switching from iOS to Android with the Samsung Galaxy S7!!

Author:
Manufacturer: EVGA

Introduction and Features

Introduction

2-PCPer-BannerGQ.jpg

Earlier this year we reviewed the EVGA 750W GQ power supply and found it to be a worthy addition to EVGA’s already plentiful power supply lineup. Today we are taking a detailed look at another member of the GQ series, the 650W GQ. It’s always nice to be able to compare different models of the same series for consistency. The GQ series is aimed at price conscious consumers who want good value while still maintaining many of the performance features found in EVGA’s premium models. The GQ Series contains four models ranging from 650W up to 1000W: the EVGA 650 GQ, 750 GQ, 850 GQ and 1000 GQ.

3-GQ-Banner.jpg

All of the GQ series power supplies are 80 Plus Gold certified for high efficiency and feature modular cables, high-quality Japanese brand capacitors, and a quiet 135mm cooling fan with a fluid dynamic bearing. The GQ series power supplies are NVIDIA SLI and AMD Crossfire Ready and are backed by a 5-year warranty.

4a-PSU-650.jpg

EVGA 650W GQ PSU Key Features:

•    Fully modular cables to reduce clutter and improve airflow
•    80 PLUS Gold certified, with up to 90%/92% efficiency (115VAC/240VAC)
•    100% Japanese brand capacitors ensure long-term reliability
•    Quiet 135mm Fluid Dynamic bearing fan for reliability and quiet operation
•    ECO Intelligent Thermal Control allows silent, fan-less operation at low power
•    NVIDIA SLI & AMD Crossfire Ready
•    Ready for 4th Generation Intel Core Processors (C6/C7 Idle Mode)
•    Compliant with ErP Lot 6 2013 Requirement
•    Active Power Factor correction (0.99) with Universal AC input
•    5-Year warranty and EVGA Customer Support

EVGA was founded in 1999 with headquarters in Brea, California. They continue to specialize in producing NVIDIA based graphics adapters and Intel based motherboards and keep expanding their PC power supply product line, which currently includes thirty-eight models ranging from the high-end 1,600W SuperNOVA T2 to the budget minded EVGA 400W power supply.

4b-650W-Compare.jpg

(Courtesy of EVGA)

As you can see in the table above, EVGA currently offers six different variations of 650W power supplies. Let’s get started with the review and see how the 650 GQ compares to the 750 GQ.

Please continue reading our review of the EVGA 650W GQ PSU!!!

Author:
Subject: Mobile
Manufacturer: EVGA

A new fighter has entered the ring

When EVGA showed me that it was entering the world of gaming notebooks at CES in January, I must admit, I questioned the move. A company that, at one point, only built and distributed graphics cards based on NVIDIA GeForce GPUs had moved to mice, power supplies, tablets (remember that?) and even cases, was going to get into the cutthroat world of notebooks. But I was promised that EVGA had an angle; it would not be cutting any corners in order to bring a truly competitive and aggressive product to the market.

06.jpg

Just a couple of short months later (seriously, is it the end of March already?) EVGA presented us with a shiny new SC17 Gaming Notebook to review. It’s thinner than you might expect, heavier than I would prefer and packs some impressive compute power, along with unique features and overclocking capability, that will put it on your short list of portable gaming rigs for 2016.

Let’s start with a dive into the spec table and then go from there.

  EVGA SC17 Specifications
Processor Intel Core i7-6820HK
Memory 32GB G.Skill DDR4-2666
Graphics Card GeForce GTX 980M 8GB
Storage 256GB M.2 NVMe PCIe SSD
1TB 7200 RPM SATA 6G HDD
Display Sharp 17.3 inch UDH 4K with matte finish
Connectivity Intel 219-V Gigabit Ethernet
Intel AC-8260 802.11ac
Bluetooth 4.2
2x USB 3.0 Type-A
1x USB 3.1 Type-C
Audio Realtek ALC 255
Integrated Subwoofer
Video 1x HDMI 1.4
2x mini DisplayPort (1x G-Sync support)
Dimensions 16-in x 11.6-in x 1.05-in
OS Windows 10 Home
MSRP $2,699

With a price tag of $2,699, EVGA owes you a lot – and it delivers! The processor of choice is the Intel Core i7-6820HK, an unlocked, quad-core, HyperThreaded processor that brings desktop class computing capability to a notebook. The base clock speed is 2.7 GHz but the Turbo clock reaches as high as 3.6 GHz out of the box, supplying games, rendering programs and video editors plenty of horsepower for production on the go. And don’t forget that this is one of the first unlocked processors from Intel for mobile computing – multipliers and voltages can all be tweaked in the UEFI or through Precision X Mobile software to push it even further.

Based on EVGA’s relationship with NVIDIA, it should surprise exactly zero people that a mobile GeForce GPU is found inside the SC17. The GTX 980M is based on the Maxwell 2.0 design and falls slightly under the desktop consumer class GeForce GTX 970 card in CUDA core count and clock speed. With 1536 CUDA cores and a 1038 MHz base clock, with boost capability, the discrete graphics will have enough juice for most games at very high image quality settings. EVGA has configured the GPU with 8GB of GDDR5 memory, more than any desktop GTX 970… so there’s that. Obviously, it would have been great to see the full powered GTX 980 in the SC17, but that would have required changes to the thermal design, chassis and power delivery.

Continue reading our review of the EVGA SC17 gaming notebook!!

Manufacturer: Reeven

Introduction and Technical Specifications

Introduction

02-4eyes-1.jpg

Courtesy of Reeven

The Reeven Four-Eyes Touch Fan Controller is a new revision of their existing four-channel controller, integrating a touch-based interface into the design. The Four-Eyes controller is housed in a metal enclosure that fits into a single 5.25" drive bay. With an MSRP of $49, the Four-Eyes Touch Fan Controller makes a good match for any enthusiast build.

03-4eyes-2.jpg

Courtesy of Reeven

The Four-Eyes Touch has a front screen divided into seven distinct sections, all touch capable. The upper four sections are tied to individual fan channels each supporting up to a 2.5A fan with total power provided of up to 30 watts. The lower right section controls the unit warning sound and display temperature with the lower left used to set the display to one of seven colors. The lower middle section is used to set the fan speed, you simply swipe your finger across the section to increase or decrease the active channel's fan speed.

Technical Specifications (taken from the Thermaltake website)

Model Number RFC-03
Dimensions (W)148 x (H)42 x (D)100mm
DC Input DC5V & DC12V
DC Output 3.7V ~ 12V (±10%)
Output Ampere 2.5A per Channel
Temperature Range 0 ~ 99C
Fan Speed Range 0 ~ 9990rpm
Weight 200g

Continue reading our review of the Reeven Four-Eyes Touch Fan Controller!

Author:
Manufacturer: Various

A system worthy of VR!

Early this year I started getting request after request for hardware suggestions for upcoming PC builds for VR. The excitement surrounding the Oculus Rift and the HTC Vive has caught fire across all spectrums of technology, from PC enthusiasts to gaming enthusiasts to just those of you interested in a technology that has been "right around the corner" for decades. The requests for build suggestions spanned our normal readership as well as those that had previously only focused on console gaming, and thus the need for a selection of build guides began.

Looking for all of the PC Perspective Spring 2016 VR guides?

I launched build guides for $900 and $1500 price points earlier in the week, but today we look at the flagship option, targeting a budget of $2500. Though this is a pricey system that should not be undertaken lightly, it is far from a "crazy expensive" build with multiple GPUs, multiple CPUs or high dollar items unnecessary for gaming and VR.

system1.jpg

With that in mind, let's jump right into the information you are looking for: the components we recommend.

VR Build Guide
$2500 Spring 2016
Component Amazon.com Link B&H Photo Link
Processor Intel Core i7-5930K $527 $578
Motherboard ASUS X99-A USB 3.1 $264 $259
Memory Corsair Dominator Platinum 16GB DDR4-3000 $169  
Graphics Card ASUS GeForce GTX 980 Ti STRIX $659 $669
Storage 512GB Samsung 950 Pro
Western Digital Red 4TB
$326
$180
$322
$154
Power Supply Corsair HX750i Platinum $144 $149
CPU Cooler Corsair H100i v2 $107 $107
Case Corsair Carbide 600C $149 $141
Total Price   Full cart - $2,519  

For those of you interested in a bit more detail on the why of the parts selection, rather than just the what, I have some additional information for you.

cpu.jpg

Unlike the previous two builds that used Intel's consumer Skylake processors, our $2500 build moves to the Haswell-E platform, an enthusiast design that comes from the realm of workstation products. The Core i7-5930K is a 6-core processor with HyperThreading, allowing for 12 addressable threads. Though we are targeting this machine for VR gaming, the move to this processor will mean better performance for other tasks as well including video encoding, photo editing and more. It's unlocked too - so if you want to stretch that clock speed up via overclocking, you have the flexibility for that.

Update: Several people have pointed out that the Core i7-5820K is a very similar processor to the 5930K, with a $100-150 price advantage. It's another great option if you are looking to save a bit more money, and you don't expect to want/need the additional PCI Express lanes the 5930K offers (40 lanes versus 28 lanes).

mb.jpg

With the transition to Haswell-E we have an ASUS X99-A USB 3.1 motherboard. This board is the first in our VR builds to support not just 2-Way SLI and CrossFire but 3-Way as well if we find that VR games and engines are able to consistently and properly integrate support for multi-GPU. This recently updated board from ASUS includes USB 3.1 support as you can tell from the name, includes 8 slots for DDR4 memory and offers enough PCIe lanes for expansion in all directions.

Looking to build a PC for the very first time, or need a refresher? You can find our recent step-by-step build videos to help you through the process right here!!

980ti.jpg

For our graphics card we have gone with the ASUS GeForce GTX 980 Ti Strix. The 980 Ti is the fastest single GPU solution on the market today and with 6GB of memory on-board should be able to handle anything that VR can toss at it. In terms of compute performance the 980 Ti is more than 40% faster than the GTX 980, the GPU used in our $1500 solution. The Strix integration uses a custom cooler that performs much better than the stock solution and is quieter. 

Continue reading our recommend build for a VR system with a budget of $2500!!

Subject: Storage
Manufacturer: Western Digital

As we were publishing our full review of the Western Digital Red 8TB, we noted something odd. While the street prices of the bare drives seemed to be a bit high ($333), the WD My Book was on sale for $250. Ryan happened to look them up and discovered that our local Best Buy actually had them available for store pick-up. Since the 8TB Red and My Book 8TB were launched simultaneously, and we were just provided early samples of the 8TB Reds last week, how could there already be 8TB Reds on the shelf just down the street? Could they have shipped some earlier form of the 8TB Red in the external My Book and continued tweaking their NASware algorithms / firmware prior to the Red launching? Our curiosity got the best of us, and we decided to find out.

Sebastian ran out to his local Best Buy and picked up a single WD My Book 8TB model, promptly took it home and ripped it open. I don’t think he even plugged it in first. This is what he found:

DSC_0062.jpg

Well, that’s not a Red label, but it does say Western Digital, and it’s clearly a HelioSeal housing (common to HGST He Series and WD Red 8TB). One thing that immediately stuck out to me was the model number. WD model numbers have a specific pattern (WD80EFZX), and that number above does *not* follow that pattern. The pattern it does follow, however, is that of the HGST He8 line:

He8 part number decoder.png

Sebastian noted something else almost immediately. The label looked like it was on top of another one. Peeling this one back showed this pure white label:

DSC_1056.jpg

…and peeling back *that* label gave us this:

Read on for the suspense-filled conclusion!

Author:
Subject: Systems
Manufacturer: Various

More power for VR

Early this year I started getting request after request for hardware suggestions for upcoming PC builds for VR. The excitement surrounding the Oculus Rift and the HTC Vive has caught fire across all spectrums of technology, from PC enthusiasts to gaming enthusiasts to just those of you interested in a technology that has been "right around the corner" for decades. The requests for build suggestions spanned our normal readership as well as those that had previously only focused on console gaming, and thus the need for a selection of build guides began.

Looking for all of the PC Perspective Spring 2016 VR guides?

I have already given suggestions for a minimum specification build, with a target price of just $900, in a previous build guide. Today we are going to up the ante a bit more with some additional cash. What can we change and upgrade if given a budget of $1500 for a PC that will handle VR and standard PC gaming?

system.jpg

It turns out you can get quite a jump in performance with that added budget:

VR Build Guide
$1500 Spring 2016
Component Amazon.com Link B&H Photo Link
Processor Intel Core i7-6700K $362 $374
Motherboard MSI Z170A Gaming M5 $200 $183
Memory 16GB Corsair Vengeance LPX DDR4-3000 $79 $94
Graphics Card MSI GeForce GTX 980 Gaming 4GB $459 $466
Storage 500GB Samsung 850 EVO
Seagate 2TB Barracuda
$149
$71
$149
$71
Power Supply Seasonic X650 Gold 650 watt $129  
CPU Cooler Cooler Master Hyper 212 EVO $29 $28
Case Fractal Design Define S Windowed $111  
Total Price   Full cart - $1,589  

For those of you interested in a bit more detail on the why of the parts selection, rather than just the what, I have some additional information for you.

cpu.jpg

The Core i7-6700K is the highest end consumer processor in Intel's lineup based on the Skylake architecture. This part is a quad-core CPU with HyperThreading enabled that allows for eight threads of processing at an extremely high base clock of 4.0 GHz. Even better, because of the K-designation, if you chose to venture into the world of overclocking, you'll be able to hit 4.5-4.7 GHz with little effort. The MSI Z170A Gaming M5 motherboard has all the overclocking features you'll need to get the job done while also including support for SLI and CrossFire multi-GPU setups, USB 3.1, dual M.2 storage connections and an improved audio interface. We were able to bump from 8GB to 16GB of DDR4 memory in this budget - a benefit for more than just gaming.

Looking to build a PC for the very first time, or need a refresher? You can find our recent step-by-step build videos to help you through the process right here!!

gpu.jpg

MSI is also the manufacturer of the NVIDIA GeForce GTX 980 graphics card we have selected, a a product that is easily the most important (and most expensive) component for your gaming and VR PC. With 4GB of GDDR5 memory, 2048 CUDA processing cores and the highest level of software and driver support for modern GPUs, the GTX 980 nets you anywhere from 15-25% additional performance over the GTX 970 from our $900 VR system build. For users considering an AMD option, the Radeon R9 390X and the Radeon R9 Nano are both fantastic options as well. 

Continue reading our selections for a $1500 VR system build!!

Manufacturer: CRYORIG

Introduction and First Impressions

The CRYORIG C7 is a compact air cooler for Intel and processors, designed to fit anywhere a stock solution will. Standing just 47 mm tall, and featuring a footprint close in size to an Intel stock cooler, CRYORIG claims this ultra-compact design will still outperform the stock solution.

c7_01.jpg

An attractive design, the C7 is further sweetened by a $29.99 retail, which places it in a favorable position in the compact CPU cooler market. Designs like these are rarely useful for enthusiasts, but there it certainly a need for good aftermarket options when overclocking isn't a consideration. There was a time when the stock Intel cooler was sufficient for many basic builds, and for some that may still be the case. But if you've spent a little more to get higher performance, a better heatsink can certainly help; and if you're an enthusiast, the stock cooler was never adequate anyway (even before Intel stopped shipping it in K series CPUs).

c7_02.jpg

In this review we'll find out if this small cooler can deliver on its performance promise, and see just how much noise it might make in the process.

Continue reading our review of the CRYORIG C7 Ultra-Compact CPU Cooler!!

Subject: Storage
Manufacturer: Western Digital

Introduction and Specifications

Introduction

Storage devices for personal computers have always been a tricky proposition. While the majority of computer parts are solid state, the computer industry has spent most of its life storing bits on electromechanical mechanical devices like tapes and floppy disks. Speaking relatively, it was only recently (less than a decade) that solid state storage became mainstream, and even today the costs of flash production make rotating media the better option for bulk data storage. Hard drives are typically vented to atmosphere, as the Bernoulli Effect is necessary as part of what keep the drive heads flying above the rotating platters. With any vented enclosure, there is always the risk of atmospheric contaminants finding their way in. Sure there are HEPA-class filters at the vent holes, but they can’t stop organic vapors that may slightly degrade the disk surface over time.

By filling a hard disk with an inert gas and hermetically sealing the disk housing, we can eliminate those potential issues. An added bonus is that if Helium is used, its lower density enables lower air friction of the rotating platters, which translates to lower power consumption when compared to an equivalent air-filled HDD. Ever since HGST released their Helium filled drives, I’ve been waiting for this technology to trickle down to consumer products, and Western Digital has recently brought such a product to market. Today we will be diving into our full performance review of the Western Digital 8TB Red.

DSC00234.jpg

Specifications (source)

specs.png

Compared to the 6TB Red, the 8TB model doubles its cache size to 128MB. We also see a slight bump in claimed transfer rates. Idle power consumption sees a slight bump due to different electronics in use, and power/capacity figures check out as well (more on that later as we will include detailed power testing in this article).

Continue reading our review of the 8TB Western Digital Red Helium-filled HDD!!

Author:
Subject: Systems
Manufacturer: Various

The entry point for PC VR

Early this year I started getting request after request for hardware suggestions for upcoming PC builds for VR. The excitement surrounding the Oculus Rift and the HTC Vive has caught fire across all spectrums of technology, from PC enthusiasts to gaming enthusiasts to just those of you interested in a technology that has been "right around the corner" for decades. The requests for build suggestions spanned our normal readership as well as those that had previously only focused on console gaming, and thus the need for a selection of build guides began.

Looking for all of the PC Perspective Spring 2016 VR guides?

This build will focus on the $900 price point for a complete PC. Months and months ago, when Palmer Lucky started discussing pricing for the Rift, he mentioned a "total buy in cost of $1500." When it was finally revealed that the purchase price for the retail Rift was $599, the math works out to include a $900 PC. 

system1.jpg

With that in mind, let's jump right into the information you are looking for: the components we recommend.

VR Build Guide
$900 Spring 2016
Component Amazon.com Link B&H Photo Link
Processor Intel Core i5-6500 $204 $204
Motherboard Gigabyte H170-Gaming 3 $94  
Memory 8GB G.Skill Ripjaws DDR4-2400 $43  
Graphics Card EVGA GeForce GTX 970 Superclock $309 $334
Storage 250GB Samsung 850 EVO
Seagate 2TB Barracuda
$88
$71
$88
$71
Power Supply EVGA 500 watt 80+ Bronze $49  
CPU Cooler Cooler Master Hyper 212 EVO $29 $28
Case Corsair SPEC-01 Red $52 $69
Total Price   Full cart - $939  

For those of you interested in a bit more details on the why of the parts selection, rather than just the what, I have some additional information for you.

cpu.jpg

Starting at the beginning, the Core i5-6500 is a true quad-core processor that slightly exceeds the minimum specificaiton requirement from Oculus. It is based on the Skylake architecture so you are getting Intel's latest architecture and it is unlikely that you'll find an instance where any PC game, standard or VR, will require more processor horsepower. The motherboard from Gigabyte is based on the H170 chipset, which is lower cost but offers fewer features than Z170-class products. But for a gamer, the result will be nearly identical - stock performance and features are still impressive. 8GB of DDR4 memory should be enough as well for gaming and decent PC productivity.

Looking to build a PC for the very first time, or need a refresher? You can find our recent step-by-step build videos to help you through the process right here!!

The GPU is still the most important component of any VR system, and with the EVGA GeForce GTX 970 selection here we are reaching the recommended specifications from Oculus and HTC/Valve. The Maxwell 2.0 architecture that the GTX 970 is based on launched in late 2014 and was very well received. The equivalent part from the AMD spectrum is the Radeon R9 290/390, so you are interested in that you can find some here.

Continue reading our selections for a $900 VR PC Build!!

Subject: Storage
Manufacturer: Samsung

Introduction

Since Samsung’s August 2015 announcement of their upcoming 48-layer V-NAND, we’ve seen it trickle into recent products like the SSD T3, where it enabled 2TB of capacity in a very small form factor. What we have not yet seen was that same flash introduced in a more common product that we could directly compare against the old. Today we are going to satisfy our (and your) curiosity by comparing a 1TB 850 EVO V1 (32-layer - V2) to a 1TB 850 EVO V2 (48-layer - V3).

**edit**

While Samsung has produced three versions of their V-NAND (the first was 24-layer V1 and only available in one of an enterprise SSDs), there have only been two versions of the 850 EVO. Despite this, Samsung internally labels this new 850 EVO as a 'V3' product as they go by the flash revision in this particular case.

**end edit**

DSC00214.jpg

Samsung’s plan is to enable higher capacities with this new flash (think 4TB 850 EVO and PRO), they also intend to silently push that same flash down into the smaller capacities of those same lines. Samsung’s VP of Marketing assured me that they would not allow performance to drop due to higher per-die capacity, and we can confirm that in part with their decision to drop the 120GB 850 EVO during the switch to 48-layer in favor of a planar 750 EVO which can keep performance up. Smaller capacity SSDs work better with higher numbers of small capacity dies, and since 48-layer VNAND in TLC form comes in at 32GB per die, that would have meant only four 48-layer dies in a 120GB SSD.

48-V-NAND.png

Samsung's 48-Layer V-NAND, dissected by TechInsights
(Similar analysis on 32-Layer V-NAND here)

Other companies have tried silently switching flash memory types on the same product line in the past, and it usually does not go well. Any drops in performance metrics for a product with the same model and spec sheet is never welcome in tech enthusiast circles, but such issues are rarely discovered since companies will typically only sample their products at their initial launch. On the flip side, Samsung appears extremely confident in their mid-line flash substitution as they have voluntarily offered to sample us a 1TB 48-layer 850 EVO for direct comparison to our older 1TB 32-layer 850 EVO. The older EVO we had here had not yet been through our test suite, so we will be comparing these two variations directly against each other starting from the same fresh out of the box and completely unwritten state. Every test will be run on both SSDs in the same exact sequence, and while we are only performing an abbreviated round of testing for these products, the important point is that I will be pulling out our Latency Percentile test for detailed performance evaluation at a few queue depths. Latency Percentile testing has proven itself far more consistent and less prone to data scatter than any other available benchmark, so we’ll be trusting it to give us the true detailed scoop on any performance differences between these two types of flash.

Read on for our comparison of the new and the old!
(I just referred to a 3D Flash part as 'old'. Time flies.)