Subject: Systems, Mobile
Manufacturer: Dell

Introduction and Specifications

Dell's premium XPS notebook family includes both 15 inch and 13 inch variants, and ship with the latest 6th-generation Intel Skylake processors and all of the latest hardware. But the screens are what will grab your immediate attention; bright, rich, and with the narrowest bezels on any notebook courtesy of Dell's InfinityEdge displays.

DSC_0530-2.jpg

Since Ryan’s review of the XPS 13, which is now his daily driver, Dell has added the XPS 15, which is the smallest 15-inch notebook design you will find anywhere. The XPS 13 is already "the smallest 13-inch laptop on the planet", according to Dell, giving their XPS series a significant advantage in the ultrabook market. The secret is in the bezel, or lack thereof, which allows Dell to squeeze these notebooks into much smaller physical dimensions than you might expect given their display sizes.

But you get more than just a compact size with these XPS notebooks, as the overall quality of the machines rivals that of anything else you will find; and may just be the best Windows notebooks you can buy right now. Is this simply bluster? Notebooks, like smartphones, are a personal thing. They need to conform to the user to provide a great experience, and there are obviously many different kinds of users to satisfy. Ultimately, however, Dell has produced what could easily be described as class leaders with these machines.

DSC_0430.jpg

Continue reading our review of the Dell XPS 13 and 15 notebooks!!

Subject: Systems, Mobile
Manufacturer: Lenovo

Introduction and Specifications

Lenovo made quite a splash with the introduction of the original X1 Carbon notebook in 2012; with its ultra-thin, ultra-light, and carbon fiber-infused construction, it became the flagship ThinkPad notebook. Fast-forward to late 2013, and the introduction of the ThinkPad Yoga; the business version of the previous year's consumer Yoga 2-in-1. The 360-degree hinge was novel for a business machine at the time, and the ThinkPad Yoga had a lot of promise, though it was far from perfect.

DSC_0945.jpg

Now we fast-forward again, to the present day. It's 2016, and Lenovo has merged their ThinkPad X1 Carbon and ThinkPad Yoga together to create the X1 Yoga. This new notebook integrates the company's Yoga design (in appearance this is akin to the recent ThinkPad Yoga 260/460 revision) into the flagship ThinkPad X lineup, and provides what Lenovo is calling "the world's lightest 14-inch business 2-in-1".

Yoga and Carbon Merge

When Lenovo announced the marriage of the X1 Carbon notebook with the ThinkPad Yoga, I took notice. A buyer of the original ThinkPad Yoga S1 (with which I had a love/hate relationship) I wondered if the new X1 version of the business-oriented Yoga convertible would win me over. On paper it checks all the right boxes, and the slim new design looks great. I couldn't wait to get my hands on one for some real-world testing, and to see if my complaints about the original TP Yoga design were still valid.

DSC_0915.jpg

As one would expect from a notebook carrying Lenovo’s ThinkPad X1 branding, this new Yoga is quite slim, and made from lightweight materials. Comparing this new Yoga to the X1 Carbon directly, the most obvious difference is that 360° hinge, which is the hallmark of the Yoga series, and exclusive to those Lenovo designs. This hinge allows the X1 Yoga to be used as a notebook, tablet, or any other imaginable position in between.

DSC_0909.jpg

Lenovo ThinkPad X1 Yoga (base configuration, as reviewed)
Processor Intel Core i5-6200U (Skylake)
Graphics Intel HD Graphics 520
Memory 8GB LPDDR3-1866
Screen 14-in 1920x1080 IPS Touch (with digitizer, active pen)
Storage 256GB M.2 SSD
Camera 720p / Digital Array Microphone
Wireless Intel 8260 802.11ac + BT 4.1 (Dual Band, 2x2)
Connections OneLink+
Mini DisplayPort
HDMI
3x USB 3.0
microSD
Audio combo jack
Dimensions 333mm x 229 mm x 16.8mm (13.11" x 9.01" x 0.66")
2.8 lbs. (1270 g)
OS Windows 10 Pro
Price $1349 - Amazon.com

Continue reading our review of the Lenovo ThinkPad X1 Yoga Notebook!!

Author:
Subject: Systems
Manufacturer: Various

More power for VR

Early this year I started getting request after request for hardware suggestions for upcoming PC builds for VR. The excitement surrounding the Oculus Rift and the HTC Vive has caught fire across all spectrums of technology, from PC enthusiasts to gaming enthusiasts to just those of you interested in a technology that has been "right around the corner" for decades. The requests for build suggestions spanned our normal readership as well as those that had previously only focused on console gaming, and thus the need for a selection of build guides began.

Looking for all of the PC Perspective Spring 2016 VR guides?

I have already given suggestions for a minimum specification build, with a target price of just $900, in a previous build guide. Today we are going to up the ante a bit more with some additional cash. What can we change and upgrade if given a budget of $1500 for a PC that will handle VR and standard PC gaming?

system.jpg

It turns out you can get quite a jump in performance with that added budget:

VR Build Guide
$1500 Spring 2016
Component Amazon.com Link B&H Photo Link
Processor Intel Core i7-6700K $362 $374
Motherboard MSI Z170A Gaming M5 $200 $183
Memory 16GB Corsair Vengeance LPX DDR4-3000 $79 $94
Graphics Card MSI GeForce GTX 980 Gaming 4GB $459 $466
Storage 500GB Samsung 850 EVO
Seagate 2TB Barracuda
$149
$71
$149
$71
Power Supply Seasonic X650 Gold 650 watt $129  
CPU Cooler Cooler Master Hyper 212 EVO $29 $28
Case Fractal Design Define S Windowed $111  
Total Price   Full cart - $1,589  

For those of you interested in a bit more detail on the why of the parts selection, rather than just the what, I have some additional information for you.

cpu.jpg

The Core i7-6700K is the highest end consumer processor in Intel's lineup based on the Skylake architecture. This part is a quad-core CPU with HyperThreading enabled that allows for eight threads of processing at an extremely high base clock of 4.0 GHz. Even better, because of the K-designation, if you chose to venture into the world of overclocking, you'll be able to hit 4.5-4.7 GHz with little effort. The MSI Z170A Gaming M5 motherboard has all the overclocking features you'll need to get the job done while also including support for SLI and CrossFire multi-GPU setups, USB 3.1, dual M.2 storage connections and an improved audio interface. We were able to bump from 8GB to 16GB of DDR4 memory in this budget - a benefit for more than just gaming.

Looking to build a PC for the very first time, or need a refresher? You can find our recent step-by-step build videos to help you through the process right here!!

gpu.jpg

MSI is also the manufacturer of the NVIDIA GeForce GTX 980 graphics card we have selected, a a product that is easily the most important (and most expensive) component for your gaming and VR PC. With 4GB of GDDR5 memory, 2048 CUDA processing cores and the highest level of software and driver support for modern GPUs, the GTX 980 nets you anywhere from 15-25% additional performance over the GTX 970 from our $900 VR system build. For users considering an AMD option, the Radeon R9 390X and the Radeon R9 Nano are both fantastic options as well. 

Continue reading our selections for a $1500 VR system build!!

Author:
Subject: Systems
Manufacturer: Various

The entry point for PC VR

Early this year I started getting request after request for hardware suggestions for upcoming PC builds for VR. The excitement surrounding the Oculus Rift and the HTC Vive has caught fire across all spectrums of technology, from PC enthusiasts to gaming enthusiasts to just those of you interested in a technology that has been "right around the corner" for decades. The requests for build suggestions spanned our normal readership as well as those that had previously only focused on console gaming, and thus the need for a selection of build guides began.

Looking for all of the PC Perspective Spring 2016 VR guides?

This build will focus on the $900 price point for a complete PC. Months and months ago, when Palmer Lucky started discussing pricing for the Rift, he mentioned a "total buy in cost of $1500." When it was finally revealed that the purchase price for the retail Rift was $599, the math works out to include a $900 PC. 

system1.jpg

With that in mind, let's jump right into the information you are looking for: the components we recommend.

VR Build Guide
$900 Spring 2016
Component Amazon.com Link B&H Photo Link
Processor Intel Core i5-6500 $204 $204
Motherboard Gigabyte H170-Gaming 3 $94  
Memory 8GB G.Skill Ripjaws DDR4-2400 $43  
Graphics Card EVGA GeForce GTX 970 Superclock $309 $334
Storage 250GB Samsung 850 EVO
Seagate 2TB Barracuda
$88
$71
$88
$71
Power Supply EVGA 500 watt 80+ Bronze $49  
CPU Cooler Cooler Master Hyper 212 EVO $29 $28
Case Corsair SPEC-01 Red $52 $69
Total Price   Full cart - $939  

For those of you interested in a bit more details on the why of the parts selection, rather than just the what, I have some additional information for you.

cpu.jpg

Starting at the beginning, the Core i5-6500 is a true quad-core processor that slightly exceeds the minimum specificaiton requirement from Oculus. It is based on the Skylake architecture so you are getting Intel's latest architecture and it is unlikely that you'll find an instance where any PC game, standard or VR, will require more processor horsepower. The motherboard from Gigabyte is based on the H170 chipset, which is lower cost but offers fewer features than Z170-class products. But for a gamer, the result will be nearly identical - stock performance and features are still impressive. 8GB of DDR4 memory should be enough as well for gaming and decent PC productivity.

Looking to build a PC for the very first time, or need a refresher? You can find our recent step-by-step build videos to help you through the process right here!!

The GPU is still the most important component of any VR system, and with the EVGA GeForce GTX 970 selection here we are reaching the recommended specifications from Oculus and HTC/Valve. The Maxwell 2.0 architecture that the GTX 970 is based on launched in late 2014 and was very well received. The equivalent part from the AMD spectrum is the Radeon R9 290/390, so you are interested in that you can find some here.

Continue reading our selections for a $900 VR PC Build!!

Author:
Subject: Systems
Manufacturer: Various

Part 1 - Picking the Parts

I'm guilty. I am one of those PC enthusiasts that thinks everyone knows how to build a PC. Everyone has done it before, and all you need from the tech community is the recommendation for parts, right? Turns out that isn't the case at all, and as more and more gamers and users come into our community, they are overwhelmed and often under served. It's time to fix that.

This cropped up for me personally when my nephew asked me about getting him a computer. At just 14 years old, he had never built a PC, watched a PC be constructed - nothing of that sort. Even though his uncle had built computers nearly every week for 15 years or more, he had little to no background on what the process was like. I decided that this was perfect opportunity to teach him and create a useful resource for the community at large to help empower another generation to adopt the DIY mindset.

I decided to start with three specific directions:

  • Part 1 - Introduce the array of PC components, what the function of each is and why we picked the specific hardware we did.
     
  • Part 2 - Show him the process of actual construction from CPU install to cable routing
     
  • Part 3 - Walk through the installation of Windows and get him setup with Steam and the idea of modern PC gaming.

Each of the above sections was broken up into a separate video during our day at the office, and will be presented here and on our YouTube channel

I would like to thank Gigabyte for sponsoring this project with us, providing the motherboard, graphics card and helping work with the other vendors to get us a great combination of hardware. Visit them at Gigabyte.com for the full lineup of motherboard, graphics cards and more!!

gbsponsor.jpg

Part 1 - Picking the Parts

Selecting the parts to build a PC can be a daunting task for a first timer. What exactly is a motherboard and do you need one? Should you get 2 or 4 or more memory modules? SSD vs HDD? Let's lay it all out there for you.

The specific configuration used in Austin's PC build is pretty impressive!

  Austin's First PC Build
Processor Intel Core i5-6600K - $249
Motherboard Gigabyte Z170X-Gaming 5 - $189
Memory Corsair Vengeance LPX 16GB DDR4-3200 - $192
Graphics Card Gigabyte GTX 970 Gaming Xtreme - $374
Storage Corsair Neutron XT 480GB - $184
Western Digital 3TB Red - $109
Case Corsair Obsidian 450D - $119
Power Supply Corsair RM550x - $117
Keyboard Logitech G910 Orion Spark - $159
Mouse Logitech G602 - $51
Headset Logitech G933 Artemis Spectrum - $192
Monitor Acer XB280HK - $699
OS Windows 10 Home - $119
Total Price $2054 (not including the monitor) - Amazon.com Cart

Continue reading My First PC Build on PC Perspective!!

Subject: Systems
Manufacturer: PC Perspective

That Depends on Whether They Need One

Ars Technica UK published an editorial called, Hey Valve: What's the point of Steam OS? The article does not actually pose the question in it's text -- it mostly rants about technical problems with a Zotac review unit -- but the headline is interesting none-the-less.

Here's my view of the situation.

steam-os.png

The Death of Media Center May Have Been...

There's two parts to this story, and both center around Windows 8. The first was addressed in an editorial that I wrote last May, titled The Death of Media Center & What Might Have Been. Microsoft wanted to expand the PC platform into the living room. Beyond the obvious support for movies, TV, and DVR, they also pushed PC gaming in a few subtle ways. The Games for Windows certification required games to be launchable by Media Center and support Xbox 360 peripherals, which pressures game developers to make PC games comfortable to play on a couch. They also created Tray and Play, which is an optional feature that allows PC games to be played from the disk while they installed in the background. Back in 2007, before Steam and other digital distribution services really took off, this eliminated install time, which was a major user experience problem with PC gaming (and a major hurdle for TV-connected PCs).

It also had a few nasty implications. Games for Windows Live tried to eliminate modding by requiring all content to be certified (or severely limiting the tools as seen in Halo 2 Vista). Microsoft was scared about the content that users could put into their games, especially since Hot Coffee (despite being locked, first-party content) occurred less than two years earlier. You could also argue that they were attempting to condition PC users to accept paid DLC.

Windows_Media_Center_Logo.png

Regardless of whether it would have been positive or negative for the PC industry, the Media Center initiative launched with Windows Vista, which is another way of saying “exploded on the launch pad, leaving no survivors.” Windows 7 cleared the wreckage with a new team, who aimed for the stars with Windows 8. They ignored the potential of the living room PC, preferring devices and services (ie: Xbox) over an ecosystem provided by various OEMs.

If you look at the goals of Steam OS, they align pretty well with the original, Vista-era ambitions. Valve hopes to create a platform that hardware vendors could compete on. Devices, big or small, expensive or cheap, could fill all of the various needs that users have in the living room. Unfortunately, unlike Microsoft, they cannot be (natively) compatible with the catalog of Windows software.

This may seem like Valve is running toward a cliff, but keep reading.

What If Steam OS Competed with Windows Store?

Windows 8 did more than just abandon the vision of Windows Media Center. Driven by the popularity of the iOS App Store, Microsoft saw a way to end the public perception that Windows is hopelessly insecure. With the Windows Store, all software needs to be reviewed and certified by Microsoft. Software based on the Win32 API, which is all software for Windows 7 and earlier, was only allowed within the “Desktop App,” which was a second-class citizen and could be removed at any point.

mozilla-2016-donothurt.png

This potential made the PC software industry collectively crap themselves. Mozilla was particularly freaked out, because Windows Store demanded (at the time) that all web browsers become reskins of Internet Explorer. This means that Firefox would not be able to implement any new Web standards on Windows, because it can only present what Internet Explorer (Trident) draws. Mozilla's mission is to develop a strong, standards-based web browser that forces all others to interoperate or die.

Remember: “This website is best viewed with Internet Explorer”?

Executives from several PC gaming companies, including Valve, Blizzard, and Mojang, spoke out against Windows 8 at the time (along with browser vendors and so forth). Steam OS could be viewed as a fire escape for Valve if Microsoft decided to try its luck and kill, or further deprecate, Win32 support. In the mean time, Windows PCs could stream to it until Linux gained a sufficient catalog of software.

microsoft-2016-windowsrt.png

Image Credit: Wikipedia

This is where Steam OS gets interesting. Its software library cannot compete against Windows with its full catalog of Win32 applications, at least not for a long time. On the other hand, if Microsoft continues to support Win32 as a first-class citizen, and they returned to the level of openness with software vendors that they had in the Windows XP era, then Valve doesn't really have a reason to care about Steam OS as anything more than a hobby anyway. Likewise, if doomsday happens and something like Windows RT ends up being the future of Windows, as many feared, then Steam OS wouldn't need to compete against Windows. Its only competition from Microsoft would be Windows Store apps and first-party software.

I would say that Valve might even have a better chance than Microsoft in that case.

Author:
Manufacturer: AMD

May the Radeon be with You

In celebration of the release of The Force Awakens as well as the new Star Wars Battlefront game from DICE and EA, AMD sent over some hardware for us to use in a system build, targeted at getting users up and running in Battlefront with impressive quality and performance, but still on a reasonable budget. Pairing up an AMD processor, MSI motherboard, Sapphire GPU with a low cost chassis, SSD and more, the combined system includes a FreeSync monitor for around $1,200.

swbf.jpg

Holiday breaks are MADE for Star Wars Battlefront

Though the holiday is already here and you'd be hard pressed to build this system in time for it, I have a feeling that quite a few of our readers and viewers will find themselves with some cash and gift certificates in hand, just ITCHING for a place to invest in a new gaming PC.

The video above includes a list of components, the build process (in brief) and shows us getting our gaming on with Star Wars Battlefront. Interested in building a system similar the one above on your own? Here's the hardware breakdown.

  AMD Powered Star Wars Battlefront System
Processor AMD FX-8370 - $197
Cooler Master Hyper 212 EVO - $29
Motherboard MSI 990FXA Gaming - $137
Memory AMD Radeon Memory DDR3-2400 - $79
Graphics Card Sapphire NITRO Radeon R9 380X - $266
Storage SanDisk Ultra II 240GB SSD - $79
Case Corsair Carbide 300R - $68
Power Supply Seasonic 600 watt 80 Plus - $69
Monitor AOC G2460PF 1920x1080 144Hz FreeSync - $259
Total Price Full System (without monitor) - Amazon.com - $924

For under $1,000, plus another $250 or so for the AOC FreeSync capable 1080p monitor, you can have a complete gaming rig for your winter break. Let's detail some of the specific components.

cpu.jpg

AMD sent over the FX-8370 processor for our build, a 4-module / 8-core CPU that runs at 4.0 GHz, more than capable of handling any gaming work load you can toss at it. And if you need to do some transcoding, video work or, heaven forbid, school or productivity work, the FX-8370 has you covered there too.

cooler.jpg

For the motherboard AMD sent over the MSI 990FXA Gaming board, one of the newer AMD platforms that includes support for USB 3.1 so you'll have a good length of usability for future expansion. The Cooler Master Hyper 212 EVO cooler was our selection to keep the FX-8370 running smoothly and 8GB of AMD Radeon DDR3-2133 memory is enough for the system to keep applications and the Windows 10 operating system happy.

Continue reading about our AMD system build for Star Wars Battlefront!!

Subject: Systems
Manufacturer: ECS

Introduction and First Impressions

When I reviewed the first LIVA mini-PC from ECS one year ago I was impressed by the concept of a full Windows computer in an enclosure about the size of a can of cola, which included everything you needed to get started out of the box. The problem with that first LIVA was that it was a little underpowered for the current generation of operating systems, and with the introduction of the LIVA X the performance improved only slightly; though it was a much more polished product overall. So how does the latest LIVA - the X2 - stack up? We'll find that out here.

DSC_0390.jpg

The first thing you're bound to notice with the X2 is the markedly different style compared to the first two. Where last year’s LIVA X had a sleek, lower-profile appearance, with the LIVA X2 we have something completely different, which I won’t judge one way or the other as this is a matter of personal taste. I do miss the angular black plastic housing from last year’s version, but the fit and finish of the X2 is very nice regardless of what you think of the rounded body and white and chrome plastic finish. (ECS also offers a LIVA “Core” barebone kit that follows the aesthetic of the LIVA X.)

So what’s new beyond the appearance? After only the most minor tweak to the SoC between the first LIVA and its followup, the LIVA X (moving a single SKU up from an Intel Bay Trail-M Celeron N2807 to the N2808), this new X2 has a completely different Intel solution under the hood with its Braswell SoC - the Intel Celeron N3050 processor, a dual-core part with 2 MB of cache and a 2.16 GHz top speed. Considering that even the <$150 Intel Compute Stick offers a quad-core CPU (the Z3735F, a Bay Trail SoC) I was a little skeptical of the dual-core option here, but we’ll just have to see how it performs.

DSC_0289.jpg

Three generations of LIVA

Continue reading our review of the ECS LIVA X2!!

Author:
Manufacturer: AMD

Four High Powered Mini ITX Systems

Thanks to Sebastian for helping me out with some of the editorial for this piece and to Ken for doing the installation and testing on the system builds! -Ryan

Update (1/23/16): Now that that AMD Radeon R9 Nano is priced at just $499, it becomes an even better solution for these builds, dropping prices by $150 each.

While some might wonder where the new Radeon R9 Nano fits in a market that offers the AMD Fury X for the same price, the Nano is a product that defines a new category in the PC enthusiast community. It is a full-scale GPU on an impossibly small 6-inch PCB, containing the same core as the larger liquid-cooled Fury X, but requiring 100 watts less power than Fury X and cooled by a single-fan dual-slot air cooler.

The R9 Nano design screams compatibility. It has the ability to fit into virtually any enclosure (including many of the smallest mini-ITX designs), as long as the case supports a dual-slot (full height) GPU. The total board length of 6 inches is shorter than a mini-ITX motherboard, which is 6.7 inches square! Truly, the Nano has the potential to change everything when it comes to selecting a small form-factor (SFF) enclosure.

IMG_3232.jpg

Typically, a gaming-friendly enclosure would need at minimum a ~270 mm GPU clearance, as a standard 10.5-inch reference GPU translates into 266.7 mm in length. Even very small mini-ITX enclosures have had to position components specifically to allow for these longer cards – if they wanted to be marketed as compatible with a full-size GPU solution, of course. Now with the R9 Nano, smaller and more powerful than any previous ITX-specific graphics card to date, one of the first questions we had was a pretty basic one: what enclosure should we put this R9 Nano into?

With no shortage of enclosures at our disposal to try out a build with this new card, we quickly discovered that many of them shared a design choice: room for a full-length GPU. So, what’s the advantage of the Nano’s incredibly compact size? It must be pointed out that larger (and faster) Fury X has the same MSRP, and at 7.5 inches the Fury X will fit comfortably in cases that have spacing for the necessary radiator.

Finding a Case for Nano

While even some of the tiniest mini-ITX enclosures (EVGA Hadron, NCASE M1, etc.) offer support for a 10.5-in GPU, there are several compact mini-ITX cases that don’t support a full-length graphics card due to their small footprint. While by no means a complete list, here are some of the options out there (note: there are many more mini-ITX cases that don’t support a full-height or dual-slot expansion card at all, such as slim HTPC enclosures):

Manufacturer Model Price
Cooler Master Elite 110 $47.99, Amazon.com
Cooltek Coolcube  
Lian Li PC-O5 $377, Amazon.com
Lian Li PC-Q01 $59.99, Newegg.com
Lian Li PC-Q03 $74.99, Newegg.com
Lian Li PC-Q07 $71.98, Amazon.com
Lian Li PC-Q21  
Lian Li PC-Q26  
Lian Li PC-Q27  
Lian Li PC-Q30 $139.99, Newegg.com
Lian Li PC-Q33 $134.99, Newegg.com
Raijintek Metis $59.99, Newegg.com
Rosewill Legacy V3 Plus-B $59.99, Newegg.com

The list is dominated by Lian Li, who offers a number of cube-like mini-ITX enclosures that would ordinarily be out of the question for a gaming rig, unless one of the few ITX-specific cards were chosen for the build. Many other fine enclosure makers (Antec, BitFenix, Corsair, Fractal Design, SilverStone, etc.) offer mini-ITX enclosures that support full-length GPUs, as this has pretty much become a requirement for an enthusiast PC case.

Continue our look at building Mini ITX systems with the AMD Radeon R9 Nano!!

Subject: Systems
Manufacturer: PC Perspective
Tagged: quad-core, gpu, gaming, cpu

Introduction and Test Hardware

logos.jpg

The PC gaming world has become divided by two distinct types of games: those that were designed and programmed specifically for the PC, and console ports. Unfortunately for PC gamers it seems that far too many titles are simply ported over (or at least optimized for consoles first) these days, and while PC users can usually enjoy higher detail levels and unlocked frame rates there is now the issue of processor core-count to consider. This may seem artificial, but in recent months quite a few games have been released that require at least a quad-core CPU to even run (without modifying the game).

One possible explanation for this is current console hardware: PS4 and Xbox One systems are based on multi-core AMD APUs (the 8-core AMD "Jaguar"). While a quad-core (or higher) processor might not be techincally required to run current games on PCs, the fact that these exist on consoles might help to explain quad-core CPU as a minimum spec. This trend could simply be the result of current x86 console hardware, as developement of console versions of games is often prioritized (and porting has become common for development of PC versions of games). So it is that popular dual-core processors like the $69 Intel Pentium Anniversary Edition (G3258) are suddenly less viable for a future-proofed gaming build. While hacking these games might make dual-core CPUs work, and might be the only way to get such a game to even load as the CPU is checked at launch, this is obviously far from ideal.

4790K_box.jpg

Is this much CPU really necessary?

Rather than rail against this quad-core trend and question its necessity, I decided instead to see just how much of a difference the processor alone might make with some game benchmarks. This quickly escalated into more and more system configurations as I accumulated parts, eventually arriving at 36 different configurations at various price points. Yeah, I said 36. (Remember that Budget Gaming Shootout article from last year? It's bigger than that!) Some of the charts that follow are really long (you've been warned), and there’s a lot of information to parse here. I wanted this to be as fair as possible, so there is a theme to the component selection. I started with three processors each (low, mid, and high price) from AMD and Intel, and then three graphics cards (again, low, mid, and high price) from AMD and NVIDIA.

Here’s the component rundown with current pricing*:

Processors tested:

Graphics cards tested:

  • AMD Radeon R7 260X (ASUS 2GB OC) - $137.24
  • AMD Radeon R9 280 (Sapphire Dual-X) - $169.99
  • AMD Radeon R9 290X (MSI Lightning) - $399
  • NVIDIA GeForce GTX 750 Ti (OEM) - $149.99
  • NVIDIA GeForce GTX 770 (OEM) - $235
  • NVIDIA GeForce GTX 980 (ASUS STRIX) - $519

*These prices were current as of  6/29/15, and of course fluctuate.

Continue reading our Quad-Core Gaming Roundup: How Much CPU Do You Really Need?

Subject: Systems
Manufacturer: Zotac

Introduction and First Impressions

The Zotac ZBOX CI321 nano is a mini PC kit in the vein of the Intel NUC, and this version features a completely fanless design with built-in wireless for silent integration into just about any location. So is it fast enough to be an HTPC or desktop productivity machine? We will find out here.

zbox_main.jpg

I have reviewed a couple of mini-PCs in the past few months, most recently the ECS LIVA X back in January. Though the LIVA X was not really fast enough to be used as a primary device it was small and inexpensive enough to be an viable product depending on a user’s needs. One attractive aspect of the LIVA designs, and any of the low-power computers introduced recently, is the passive nature of such systems. This has unfortunately resulted in the integration of some pretty low-performance CPUs to stay within thermal (and cost) limits, but this is beginning to change. The ZBOX nano we’re looking at today carries on the recent trend of incorporating slightly higher performance parts as its Intel Celeron processor (the 2961Y) is based on Haswell, and not the Atom cores at the heart of so many of these small systems.

Another parallel to the Intel NUC is the requirement to bring your own memory and storage, and the ZBOX CI321 nano accepts a pair of DDR3 SoDIMMs and 2.5” storage drives. The Intel Celeron 2961Y processor supports up to 1600 MHz dual-channel DDR3L which allows for much higher memory bandwidth than many other mini-PCs, and the storage controller supports SATA 6.0 Gbps which allows for higher performance than the eMMC storage found in a lot of mini-PCs, depending on the drive you choose to install. Of course your mileage will vary depending on the components selected to complete the build, but it shouldn’t be difficult to build a reasonably fast system.

zbox_back_angle.jpg

Continue reading our review of the Zotac ZBOX CI321 nano!!

Manufacturer: AMD

Digging into a specific market

A little while ago, I decided to think about processor design as a game. You are given a budget of complexity, which is determined by your process node, power, heat, die size, and so forth, and the objective is to lay out features in the way that suits your goal and workload best. While not the topic of today's post, GPUs are a great example of what I mean. They make the assumption that in a batch of work, nearby tasks are very similar, such as the math behind two neighboring pixels on the screen. This assumption allows GPU manufacturers to save complexity by chaining dozens of cores together into not-quite-independent work groups. The circuit fits the work better, and thus it lets more get done in the same complexity budget.

amd-2015-carrizo-63mil.jpg

Carrizo is aiming at a 63 million unit per year market segment.

This article is about Carrizo, though. This is AMD's sixth-generation APU, starting with Llano's release in June 2011. For this launch, Carrizo is targeting the 15W and 35W power envelopes for $400-$700 USD notebook devices. AMD needed to increase efficiency on the same, 28nm process that we have seen in their product stack since Kabini and Temash were released in May of 2013. They tasked their engineers to optimize their APU's design for these constraints, which led to dense architectures and clever features on the same budget of complexity, rather than smaller transistors or a bigger die.

15W was their primary target, and they claim to have exceeded their own expectations.

Backing up for a second. Beep. Beep. Beep. Beep.

When I met with AMD last month, I brought up the Bulldozer architecture with many individuals. I suspected that it was a quite clever design that didn't reach its potential because of external factors. As I started this editorial, processor design is a game and, if you can save complexity by knowing your workload, you can do more with less.

amd-2015-carrizo-3.jpg

Bulldozer looked like it wanted to take a shortcut by cutting elements that its designers believed would be redundant going forward. First and foremost, two cores share a single floating point (decimal) unit. While you need some floating point capacity, upcoming workloads could use the GPU for a massive increase in performance, which is right there on the same die. As such, the complexity that is dedicated to every second FPU can be cut and used for something else. You can see this trend throughout various elements of the architecture.

Read on for more about what Carrizo is, and what it came from to get here.

A substantial upgrade for Thunderbolt

Today at Computex, Intel took the wraps off of the latest iteration of Thunderbolt, a technology that I am guessing many of you thought was dead in the water. It turns out that's not the case, and this new set of features that Thunderbolt 3 offers may in fact push it over the crest and give it the momentum needed to become a useable and widespread standard.

First, Thunderbolt 3 starts with a new piece of silicon, code named Alpine Ridge. Not only does Alpine Ridge increase the available Thunderbolt bandwidth to 40 Gbps but it also adds a native USB 3.1 host controller on the chip itself. And, as mobile users will be glad to see, Intel is going to start utilizing the new USB Type-C (USB-C) connector as the standard port rather than mini DisplayPort.

tb3-1.jpg

This new connector type, that was already a favorite among PC Perspective staff because of its size and its reversibility, will now be the way connectivity and speed increases this generation with Thunderbolt. This slide does a good job of summarizing the key take away from the TB3 announcement: 40 Gbps, support for two 4K 60 Hz displays, 100 watt (bi-directional) charging capability, 15 watt device power and support for four protocols including Thunderbolt, DisplayPort, USB and PCI Express.

tb3-2.jpg

Protocol support is important and Thunderbolt 3 over USB-C will be able to connect directly to a DisplayPort monitor, to an external USB 3.1 storage drive, an old thumb drive or a new Thunderbolt 3 docking station. This is truly unrivaled flexibility from a single connector. The USB 3.1 controller is backward compatible as well: feel free to connect any USB device to it that you can adapt to the Type-C connection.

tb3-3.jpg

From a raw performance perspective Thunderbolt 3 offers a total of 40 Gbps of bi-directional bandwidth, twice that of Thunderbolt 2 and 4x what we get with USB 3.1. That offers users the ability to combine many different devices, multiple displays and network connections and have plenty of headroom.

tb3-4.jpg

With Thunderbolt 3 you get twice as much raw video bandwidth, two DP 1.2 streams, allowing you to run not just a single 4K display at 60 Hz but two of them, all over a single TB3 cable. If you want to connect a 5K display though, you will be limited to just one of them.

tb3-5.jpg

For mobile users, which I think is the area where Thunderbolt 3 will be the most effective, the addition of USB 3.1 allows for charging capability up to 100 watts. This is in addition to the 15 watts of power that Thunderbolt provides to devices directly - think external storage, small hubs/docks, etc.

Continue reading our preview of the new Thunderbolt 3 technology!!

Author:
Manufacturer: NVIDIA

SHIELD Specifications

Announced just this past June at last year’s Google I/O event, Android TV is a platform developed by Google, running Android 5.0 and higher, that aims to create an interactive experience for the TV. This platform can be built into a TV directly as well as into set-top style boxes, like the NVIDIA SHIELD we are looking at today. The idea is to bring the breadth of apps and content to the TV through the Android operating system in a way that is both convenient and intuitive.

NVIDIA announced SHIELD back in March at GDC as the first product to use the company’s latest Tegra processor, the X1. This SoC combines an 8-core big.LITTLE ARM processor design with a 256-core implementation of the NVIDIA Maxwell GPU architecture, providing GPU performance previously unseen in an Android device. I have already spent some time with the NVIDIA SHIELD at various events and the promise was clearly there to make it a leading option for Android TV adoption, but obviously there were questions to be answered.

DSC01740.jpg

Today’s article will focus on my early impressions with the NVIDIA SHIELD, having used it both in the office and at home for a handful of days. As you’ll see during the discussion there are still some things to be ironed out, some functionality that needs to be added before SHIELD and Android TV can really be called a must-buy product. But I do think it will get there.

And though this review will focus on the NVIDIA SHIELD, it’s impossible not to marry the success of SHIELD with the success of Google’s Android TV. The dominant use case for SHIELD is as a media playback device, with the gaming functionality as a really cool side project for enthusiasts and gamers looking for another outlet. For SHIELD to succeed, Google needs to prove that Android TV can improve over other integrated smart TV platforms as well as other set-top box platforms like Boxee, Roku and even the upcoming Apple TV refresh.

But first, let’s get an overview of the NVIDIA SHIELD device, pricing and specifications, before diving into my experiences with the platform as a whole.

Continue reading our review of the new NVIDIA SHIELD with Android TV!!

Author:
Subject: Systems
Manufacturer: Intel

Some familiar scenery

If you thought that Intel was going to slow down on its iteration in the SFF (small form factor) system design, you were sadly mistaken. It was February when Intel first sent us a NUC based on Broadwell, an iterative upgrade over a couple of generations for this very small platform, 4" x 4", that showed proved to be interesting from a technology stand point but didn't shift expectations of the puck-sized PC business.

06_0.jpg

Today we are looking at yet another NUC, also using a Broadwell processor, though this time the CPU is running quite a bit faster, with Intel Iris 6100 graphics and a noticeably higher TDP. The Core i7-5557U is still a dual-core / HyperThreaded processor but it increases base and Turbo clocks by wide margins, offering as much as 35% better CPU performance and mainstream gaming performance boosts in the same range. This doesn't mean the NUC 5i7RYH will overtake your custom built desktop but it does make it a lot more palatable for everyday PC users.

Oh, and we have an NVMe PCI Express SSD inside this beast as well. (Waaaaaa??)

Continue reading our review of the Intel NUC5i7RYH SFF System with Broadwell and Iris!!

Manufacturer: PC Perspective

No Longer the Media Center of Attention

Gabe Aul, of Microsoft's Windows Insiders program, has confirmed on Twitter that Windows 10 will drop support for Windows Media Center due to a decline in usage. This is not surprising news as Microsoft has been deprecating the Media Center application for a while now. In Windows 8.x, the application required both the “Pro” SKU of the operating system, and then users needed to install an optional add-on above and beyond that. The Media Center Pack cost $10 over the price of Windows 8.x Pro unless you claimed a free license in the promotional period surrounding Windows 8's launch.

Windows_Media_Center_Logo.png

While Media Center has been officially abandoned, its influence on the industry (and vice versa) is an interesting story. For a time, it looked like Microsoft had bigger plans that were killed by outside factors and other companies seem to be eying the money that Microsoft left on the table.

There will be some speculation here.

We could go back to the days of WebTV, but we won't. All you need to know is that Microsoft lusted over the living room for years. Windows owned the office and PC gaming was taking off with strong titles (and technologies) from Blizzard, Epic, iD, Valve, and others. DirectX was beloved by developers, which led to the original Xbox. Their console did not get a lot of traction, but they respected it as a first-generation product that was trying to acquire a foothold late in a console generation. Financially, the first Xbox would cost Microsoft almost four billion dollars more than it made.

At the same time, Microsoft was preparing Windows to enter the living room. This was the company's power house and it acquired significant marketshare wherever it went, due to its ease of development and its never-ending supply of OEMs, even if the interface itself was subpar. Their first attempt at bringing Windows to the living room was Windows XP Media Center Edition. This spin-off of Windows XP could only be acquired by OEMs to integrate into home theater PCs (HTPCs). The vision was interesting, using OEM competition to rapidly prototype what users actually want in a PC attached to a TV.

This leads us to Windows Vista, which is where Media Center came together while the OS fell apart.

Read on to see how Halo 2 for Windows Vista was almost the prototype for PC gaming.

Author:
Subject: Systems, Mobile
Manufacturer: Intel

Specifications

When I first was handed the Intel Compute Stick product at CES back in January, my mind began to race with a lot of questions. The first set were centered around the capabilities of the device itself: where could it be used, how much performance could Intel pack into it and just how many users would be interested in a product like this? Another set of questions was much more philosophical in nature: why was Intel going in this direction, does this mean an end for the emphasis on high performance componentry from Intel and who comes up with these darned part numbers?

intel1.jpg

I have since settled my mind on the issues surrounding Intel’s purpose with the Compute Stick and began to dive into the product itself. On the surface the Intel Compute Stick is a product entering late into a potentially crowded market. We already have devices like the Roku, Google Chromecast, the Apple TV, and even the Amazon Fire TV Stick. All of those devices share some of the targets and goals of the Compute Stick, but the one area where Intel’s product really stands out is flexibility. The Roku has the most pre-built applications and “channels” for a streaming media box. The Chromecast is dirt cheap at just $30 or so. Even Amazon’s Fire TV Stick is clearly the best choice for streaming Amazon’s own multimedia services. But the Intel Compute Stick can do all of those things – in addition to operating as a standalone PC with Windows or Linux. Anything you can do I can do better…

But it’s not a product without a few flaws, most of which revolve around the status of the current operating system designs for TVs and larger displays. Performance obviously isn’t peeling the paint off any walls, as you would expect. But I still think at for $150 with a full copy of Windows 8.1 with Bing, the Intel Compute Stick is going to find more fans that you might have first expected.

Continue reading our review of the Intel Compute Stick!!

Author:
Manufacturer: Intel

Intel Pushes Broadwell to the Next Unit of Computing

Intel continues to invest a significant amount of money into this small form factor product dubbed the Next Unit of Computing, or NUC. When it was initially released in December of 2012, the NUC was built as an evolutionary step of the desktop PC, part of a move for Intel to find new and unique form factors that its processors can exist in. With a 4" x 4" motherboard design the NUC is certainly a differentiating design and several of Intel's partners have adopted it for products of their: Gigabyte's BRIX line being the most relevant. 

But Intel's development team continues to push the NUC platform forward and today we are evaluating the most recent iteration. The Intel NUC5i5RYK is based on the latest 14nm Broadwell processor and offers improved CPU performance, a higher speed GPU and lower power consumption. All of this is packed into a smaller package than any previous NUC on the market and the result is both impressive and totally expected.

A Walk Around the NUC

To most poeple the latest Intel NUC will look very similar to the previous models based on Ivy Bridge and Haswell. You'd be right of course - the fundamental design is unchanged. But Intel continues to push forward in small ways, nipping and tucking away. But the NUC is still just a box. An incredibly small one with a lot of hardware crammed into it, but a box none the less.

IMG_1619.jpg

While I can appreciate the details including the black and silver colors and rounded edges, I think that Intel needs to find a way to add some more excitement into the NUC product line going forward. Admittedly, it is hard to inovate in that directions with a focus on size and compression.

Continue reading our review of the Intel NUC NUC5i5RYK SFF!!

Author:
Manufacturer: Gigabyte

SFF PCs get an upgrade

Ultra compact computers, otherwise known as small form factor PCs, are a rapidly increasing market as consumers realize that, for nearly all purposes other than gaming and video editing, Ultrabook-class hardware is "fast enough". I know that some of our readers will debate that fact, and we welcome the discussion, but as CPU architectures continue to improve in both performance and efficiency, you will be able to combine higher performance into smaller spaces. The Gigabyte BRIX platform is the exact result that you expect to see with that combination.

Previously, we have seen several other Gigabyte BRIX devices including our first desktop interaction with Iris Pro graphics, the BRIX Pro. Unfortunately though, that unit was plagued by noise issues - the small fan spun pretty fast to cool a 65 watt processor. For a small computer that would likely sit on top of your desk, that's a significant drawback. 

IMG_1511.JPG

Intel Ivy Bridge NUC, Gigabyte BRIX S Broadwell, Gigabyte BRIX Pro Haswell

This time around, Gigabyte is using the new Broadwell-U architecture in the Core i7-5500U and its significantly lower, 15 watt TDP. That does come with some specification concessions though, including a dual-core CPU instead of a quad-core CPU and a peak Turbo clock rate that is 900 MHz lower. Comparing the Broadwell BRIX S to the more relevant previous generation based on Haswell, we get essentially the same clock speed, a similar TDP, but also an improved core architecture.

Today we are going to look at the new Gigabyte BRIX S featuring the Core i7-5500U and an NFC chip for some interesting interactions. The "S" designates that this model could support a full size 2.5-in hard drive in addition to the mSATA port. 

Let's dive in and take a look!

Subject: Systems
Manufacturer: ECS

Introduction, Specs, and First Impressions

In our review of the original LIVA mini-PC we found it to be an interesting product, but it was difficult to identify a specific use-case for it; a common problem with the mini-PC market. Could the tiny Windows-capable machine be a real desktop replacement? That first LIVA just wasn't there yet. The Intel Bay Trail-M SoC was outmatched when playing 1080p Flash video content and system performance was a little sluggish overall in Windows 8.1, which wasn't aided by the limitation of 2GB RAM. (Performance was better overall with Ubuntu.) The price made it tempting but it was too underpowered as one's only PC - though a capable machine for many tasks.

LIVAX_ANGLE.JPG

Fast forward to today, when the updated version has arrived on my desk. The updated LIVA has a cool new name - the “X” - and the mini computer's case has more style than before (very important!). Perhaps more importantly, the X boasts upgraded internals as well. Could this new LIVA be the one to replace a desktop for productivity and multimedia? Is this the moment we see the mini-PC come into its own? There’s only one way to find out. But first, I have to take it out of the box.


Specifications:

Chipset: Intel® Bay Trail-M/Bay Trail-I SOC
Memory: DDR3L 2GB/4GB
Expansion Slot: 1 x mSATA for SSD
Storage: eMMC 64GB/32GB
Audio: HD Audio Subsystem by Realtek ALC283
LAN: Realtek RTL8111G Gigabit Fast Ethernet Controller
USB: 1 x USB3.0 Port, 2 x USB2.0 Ports
Video Output: 1 x HDMI Port, 1 x VGA Port
Wireless: WiFi 802.11 b/g/n & Bluetooth 4.0
PCB Size: 115 x 75 mm
Dimension: 135 x 83 x 40 mm
VESA Support: 75mm / 100mm
Adapter Input: AC 100-240V, Output: DC 12V / 3A
OS Support: Linux based OS, Windows 7 (via mSATA SSD) Windows 8/8.1


Thanks to ECS for providing the LIVA X for review!

Packaging and Contents

LIVAX_BOX.JPG

The LIVA X arrives in a smaller box than its predecessor, and one with a satin finish cuz it's extra fancy.

Continue reading our review of the ECS LIVA X Mini PC!!