Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

There's been a lot of recent talk about the Samsung SM951 M.2 PCIe SSD. It was supposed to launch as an NVMe product, but ended up coming out in AHCI form. We can only assume that Samsung chose to hold back on their NVMe-capable iteration because many devices are unable to boot fron an NVMe SSD. Sitting back for a few months was a wise choice in this case, as an NVMe-only version would limit the OEM products that could equip it. That new variant did finally end up launching, and we have rounded it and the other Samsung M.2 PCIe SSDs up for some much awaited testing:

150407-165908.jpg

I'll be comparing the three above units against some other PCIe SSDs, including the Intel SSD 750, Kingston HyperX Predator, G.Skill Phoenix Blade, Plextor M6e Black, and more!

Continue reading our review of these hot new M.2 products!

Subject: Storage
Manufacturer: ICY DOCK

Introduction, Specifications and Packaging

Introduction

The other day we took a look at the ICY DOCK ToughArmor MB996SP-6SB and ICYBento MB559U3S-1S. Today we'll move onto a couple of larger products in their lineup:

150406-140956.jpg

To the left is the ICYCube MB561U3S-4S, which is a 4-bay eSATA / USB 3.0 JOBD enlcosure. To the right is the ICYRaid MB662U3-2S, which is a 2-bay USB 3.0 JBOD/Big/RAID-0/RAID-1 enclosure.

Read on for our review!

Subject: Storage
Manufacturer: Samsung

Introduction

The tale of the Samsung 840 EVO is a long and winding one, with many hitches along the way. Launched at the Samsung 2013 Global SSD Sumit, the 840 EVO was a unique entry into the SSD market. Using 19nm planar TLC flash, the EVO would have had only mediocre write performance if not for the addition of a TurboWrite cache, which added 3-12GB (depending on drive capacity) of SLC write-back cache. This gave the EVO great all around performance in most consumer usage scenarios. It tested very well, was priced aggressively, and remained our top recommended consumer SSD for quite some time. Other editors here at PCPer purchased them for their own systems. I even put one in the very laptop on which I'm writing this article.

image.jpg

An 840 EVO read speed test, showing areas where old data had slowed.

About a year after release, some 840 EVO users started noticing something weird with their systems. The short version is that data that sat unmodified for a period of months was no longer able to be read at full speed. Within a month of our reporting on this issue, Samsung issued a Performance Restoration Tool, which was a combination of a firmware and a software tool that initiated a 'refresh', where all stale data was rewritten, restoring read performance back to optimal speeds. When the tool came out, many were skeptical that the drives would not just slow down again in the future. We kept an eye on things, and after a few more months of waiting, we noted that our test samples were in fact slowing down again. We did note it was taking longer for the slow down to manifest this time around, and the EVOs didn't seem to be slowing down to the same degree, but the fact remained that the first attempt at a fix was not a complete solution. Samsung kept up their end of the bargain, promising another fix, but their initial statement was a bit disappointing, as it suggested they would only be able to correct this issue with a new version of their Samsung Magician software that periodically refreshed the old data. This came across as a band-aid solution, but it was better than nothing.

Read on for our full evaluation of the new firmware and Magician 4.6!

Subject: Storage
Manufacturer: ICY DOCK

Introduction, Specifications and Packaging

Introduction

Today we're taking a quick look at a pair of drive enclosures sent to us by ICY DOCK.

150403-114732.jpg

To the left is the ToughArmor MB996SP-6SB, which is a 5.25" bay hot swap chassis capable of mounting 6 2.5" SATA devices. To the right is the ICYBento MB559U3S-1S, which is a UASP external 3.5" HDD enclosure connectable by either USB 3.0 or eSATA.

Specifications

ToughArmor MB996SP-6SB

ToughArmor MB996SP-6SB specs.png

ICYBento MB559U3S-1S (also available in black)

ICYBento MB559U3S-1S specs.png

Packaging

ToughArmor MB996SP-6SB

150403-115006.jpg

We did note that the spec sheet and manual included SATA power to molex adapters, but we found no such adapters in the box. We may have received old stock, as the web site appears more up to date than the paper manual we received.

**update** ICYDock reached out and let me know that all shipping boxes of this part should come with a pair of molex to SATA power cables. Our sample came from their techs and they must have forgot to put those cables back into our box.

ICYBento MB559U3S-1S (also available in black)

150403-120746.jpg

Both items were well packaged with no shipping damage noted.

Read on for our review!

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Editor's note: We are hosting a live stream event with our friends at Intel's SSD group today to discuss the new SSD 750 Series launch and to giveaway a couple of the 400GB units as well! Be sure you stop by to ask quesitons, learn about the technology and have a chance to win some hardware!!

Introduction:

Intel has a habit of overlapping their enterprise and consumer product lines. Their initial X25-M was marketed to both consumer and enterprise, with heavier workloads reserved for the X25-E. Their SSD 320 Series was also spec'd for both consumer and enterprise usage. Their most recent SSD 730 Series was actually an overclocked version of their SSD DC S3500 units. Clearly this is an established trend for Intel, so when they dominated flash memory performance with the SSD DC P3700 launch last year, pretty much everyone following these sorts of things eagerly waited in anticipation of a consumer release.

While they were hard to find outside of enterprise supply chains, some dedicated users picked up that enterprise part for their enthusiast systems, but many were disappointed as the P3700's enterprise hardware and firmware conflicted with many consumer motherboards' BIOS, rendering it unbootable for some and causing address space conflicts for others. In short, the P3700 was a great product that simply did not function properly with most consumer motherboards. All anyone could do was wait for Intel to spin a consumer product from this enterprise part, and that day is today:

addincard.jpg

This is the add-in card version of the new Intel SSD 750 Series that brings NVMe technology and insane performance levels to consumers at a cost that is more affordable than you might think.

150401-224510.jpg

As with the enterprise variant, Intel chose to launch the SSD 750 Series in the familiar HHHL PCIe x4 form factor as well as a 2.5" SFF-8639 packaging. The 2.5" model contains the exact same set of components, just rearranged into a smaller device.

150401-224548.jpg

Despite being 2.5", this is not a SATA device. While the connector may look similar, it is *very* different:

SFF-8639.png

As you can see above, SFF-8639 further extends on the familiar SATA power and data connections, which had already been extended a few times to add additional SAS data lines. The new spec adds a complete row of pins on the back side of the connector to support four lanes of PCIe. This means the SFF variant of the SSD 750 will perform identically to the PCIe half-height card version. Since SFF-8639 was born as an enterprise spec, one question remains - how do you connect it to a consumer desktop motherboard? Well, desktop motherboards are coming with M.2 ports that can support up to PCIe 3.0 x4, so all you really need is a simple way to get from point A to point B:

150401-230518.jpg

Pictured above (left) is the ASUS 'Hyper Kit' adapter PCB, which was sampled to us with their new Sabertooth X99 motherboard just for testing these new 2.5" devices. The connector you see at the right may look familiar, as it is an internal Mini-SAS HD (SFF-8643) cable commonly used with high end SAS RAID cards. Intel is basically borrowing the physical spec, but rewiring those four SAS lanes over to the PCIe pins of the SFF-8639 connector at the other end of the cable.

Continue reading our review of the Intel SSD 750 Series NVMe 1.2TB PCIe drives!!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Following the same pattern that Samsung led with the 840 Pro and 840 EVO, history has repeated itself with the 850 Pro and 850 EVO. With the 850 EVO launching late last year and being quite successful, it was only a matter of time before Samsung expanded past the 2.5" form factor for this popular SSD. Today is that day:

150330-182303_DxO.jpg

Today we will be looking at the MSATA and M.2 form factors. To clarify, the M.2 units are still using a SATA controller and connection, and must therefore be installed in a system capable of linking SATA lanes to its M.2 port. As both products are SATA, the DRAM cache based RAPID mode included with their Magician value added software is also available for these models. We won't be using RAPID for this review, but we did take a look at it in a prior article.

Given that 850 EVOs use VNAND - a vastly different technology than the planar NAND used in the 840 EVO, we suspect it is not subject to the same flash cell drift related issues (hopefully to be corrected soon) in the 840 EVO. Only time will tell for sure on that front, but we have not see any of those issues present in 850 EVO models since their launch.

Picture5.png

Cross sectional view of Samsung's 32-layer VNAND. Photo by TechInsights.

Samsung sampled us the M.2 SATA in 120GB and 500GB, and the MSATA in 120GB and 1TB. Since both are SATA-based, these are only physical packaging differences. The die counts are the same as the 2.5" desktop counterparts. While the pair of 120GB models should be essentially identical, we'll throw both in with the results to validate the slight differences in stated specs below.

Continue reading our review of these new Samsung 850 EVOs!!

Subject: Storage
Manufacturer: OCZ Storage Solutions

Introduction, Specifications and Packaging

Introduction:

OCZ has been on a fairly steady release track since their aquisition by Toshiba. Having previously pared down their product lines, taking a minimalist approach, the other half of that cycle has taken place with releases like the OCZ AMD Radeon R7. Today we see another addition to OCZ's lineup, in the form of a newer Vector - the Vector 180 Series:

ocz_vector180_image1.jpg

Today we will run all three available capacities (240GB, 480GB, and 960GB) through our standard round of testing. I've thrown in an R7 as a point of comparison, as well as a hand full of the competition.

Specifications:

OCZ Vector 180 slides - 7.jpg

Here are the specs from OCZ's slide presentation, included here as it gives a good spec comparison across OCZ's SATA product range.

Packaging:

DSC09886.JPG

Standard packaging here. 3.5" adapter bracket and Acronis 2013 cloning software product key included.

Continue reading our review of the new OCZ Vector 180 SSD!!

Subject: Storage
Manufacturer: Patriot Memory

Introduction, Specs and Packaging

Introduction:

We're getting back into USB device roundup testing. To kick it off, Patriot passed along a couple of USB samples for review. First up is the Supersonic Phoenix 256GB:

150311-202020.jpg

Specs:

  • Read speed: Up to 260MB/s
  • Write speed: up to 170MB/s
  • Compact and lightweight
  • Stylish 3D design
  • USB Powered
  • SuperSpeed USB 3.0
  • Compatible with Windows 8, Windows 7, Windows Vista, Windows XP, Windows 2000, Windows ME, Linux 2.4 and later, Mac OS9, X and later

Next up is their Supersonic Rage 2:

150311-202124.jpg

  • Up to 400MB/s Read; Up to 300MB/s Write
  • Durable design extends the life of your drive
  • Rubber coated housing protects from drops, spills, daily abuse
  • Retractable design protects USB connector when drive not in use
  • LED Light Indicator
  • Compatible with Windows® 8, Windows® 8.1, Windows® 7,
    Windows Vista®, Windows XP®, Windows 2000®, Windows® ME,
    Linux 2.4 and later, Mac® OS9, X

Packaging:

The Phoenix comes well packaged with a necessary USB 3.0 cable:

150311-201956.jpg

The Rage 2 comes in very simple packaging:

150311-201338.jpg

Read on for the results!

Author:
Manufacturer: ASUS

Technology Background

Just over a week or so ago Allyn spent some time with the MSI X99A Gaming 9 ACK motherboard, a fact that might seem a little odd to our frequent readers. Why would our storage editor be focusing on a motherboard? USB 3.1 of course! When we visited MSI at CES in January they were the first company to show working USB 3.1 hardware and performance numbers that we were able duplicate in our testing when MSI sent us similar hardware.

150213-160838.jpg

But ASUS is in this game as well, preparing its product lines with USB 3.1 support courtesy of the same ASMedia controller we looked at before. ASUS has a new revision of several motherboards planned with integrated on-board USB 3.1 but is also going to be releasing an add-in card with USB 3.1 support for existing systems.

Today we are going to test that add-in card to measure ASUS' implementation of USB 3.1 and see how it stacks up to what MSI had to offer and what improvements and changes you can expect from USB 3.0.

USB 3.1 Technology Background

Despite the simple point denomination change in USB 3.1, also known as SuperSpeed+, the technological and speed differences in the newest revision of USB are substantial. Allyn did a good job of summarizing the changes that include a 10 Gbps link interface and a dramatic drop in encoding overhead that enables peak theoretical performance improvements of 2.44x compared to USB 3.0.

120606_lecroy_4-.jpg

USB 3.1 is rated at 10 Gbps, twice that of USB 3.0. The little-reported-on nugget of info from the USB 3.1 specification relates to how they classify the raw vs. expected speeds. Taking USB 3.0 as an example, Superspeed can handle a raw 5Gbps data rate, but after subtracting out the overhead (packet framing, flow control, etc), you are left with ~450MB/s of real throughput. Superspeed+ upgrades the bit encoding type from 8b/10b (80% efficient) to 128b/132b (97% efficient) *in addition to* the doubling of raw data rate. This means that even after accounting for overhead, Superspeed+’s best case throughput should work out to ~1.1GB/s. That’s not a 2x speed improvement – it is actually 2.44x of USB 3.0 speed. Superspeed+ alright!

Continue reading our preview of USB 3.1 Performance on ASUS hardware!

Subject: Storage
Manufacturer: Crucial

Introduction, Specifications and Packaging

Introduction:

Micron's Crucial brand has been cranking out some great low cost SSDs for the past several years now. While their early drives pushed into the SATA 6Gb/sec interface before most of the competition, their performance was inconsistent and lagged behind some of the other more nimble solutions available at that time. This pattern was broken around the time of the M550 and MX100 launches. Those two drives were heavily competitive in performance and even moreso in pricing. Actually the pricing is probably the bigger story - when they launched, one of our readers caught a 512GB MX100 on sale for $125 ($0.24/GB)! We are coming up on a year since the MX100, and at CES 2015 Micron launched a pair of SSD models - the BX100 and MX200. Today we are going to look at the BX100 series:

150212-172437.jpg

Crucial aims to make the BX100 as their lowest cost/GB SSD ever - even cheaper than the MX100. Since Micron makes the flash, the best way to drive costs down is to use a lower cost controller. The Silicon Motion SM2246EN is cheaper to procure than the equivalent Marvell part, yet still performs rather well.

SM2246EN Block Diagram.jpg

The Silicon Motion SM2246EN SSD controller

This is a great controller, as we have seen in our prior review of the ADATA SP610, Corsair Neutron LX, and Angelbird SSD WRK. From the specs, we can see that Micron has somehow infused their variant with increased write speeds even though it appears to use the same flash as those competing models listed above. We'll see how this plays out as the review progresses.

Read on for the full review!

Subject: Storage
Manufacturer: MSI

Introduction and Background

We first got a peek of USB 3.1 at CES 2015. MSI had a cool demo showing some throughput figures including read and write speeds as high as 690 MB/s, well over the ~450 MB/s we see on USB 3.0 options shipping today. 

150212-152133.jpg

We were of course eager to play around with this for ourselves, and MSI was happy to oblige, sending along a box of goodies:

150211-164711.jpg

Stuff we will be testing today (Samsung T1 was not part of the MSI demo).

For those unaware, USB 3.1 (also known as Superspeed+), while only a 0.1 increment in numbering, incorporates a doubling of raw throughput and some dramatic improvements to the software overhead of the interface.

USB 3.1 speed.png

Don't be confused between the USB 3.1 standard and the new USB Type-C connector - they are unrelated and independent of each other.

usb3.1-3.jpg

Yes, you’re all going to have to buy *more* cables in the future.

Type-C connectors will enable more simple cable design and thinner connections going forward but USB 3.1 will exist in both Type-A/B and Type-C going forward. Our benchmarking today will utilize Type-A.

Read on for some more detail and speed tests of this new specification.

Subject: Storage
Manufacturer: Plextor
Tagged: ssd, plextor, pcie, 256GB

Introduction, Specifications and Packaging

Introduction:

Plextor launched their M6e PCIe SSD in mid-2014. This was the first consumer retail available native PCIe SSD. While previous solutions such as the OCZ RevoDrive bridged SATA SSD controllers to PCIe through a RAID or VCA device, the M6e went with a Marvell controller that could speak directly to the host system over a PCIe 2.0 x2 link. Since M.2 was not widely available at launch time, Plextor also made the M6e available with a half-height PCIe interposer, making for a painless upgrade for those on older non M.2 motherboards (which at that time was the vast majority).

With the M6e out for only a few months time (and in multiple versions), I was surprised to see Plextor launch an additonal version of it at the 2015 CES this past January. Announced alongside the upcoming M7e, the M6e Black Edition is essentially a pimped out version of the original M6e PCIe:

DSC07414_resize.JPG

We left CES with a sample of the M6e Black, but had to divert our attention to a few other pressing issues shortly after. With all of that behind us, it's time to get back to cranking out the storage goodness, so let's get to it!

Read on for the full review!

Subject: Storage
Manufacturer: Samsung

Introduction

Well here we are again with this Samsung 840 EVO slow down issue cropping up here, there, and everywhere. The story for this one is so long and convoluted that I’m just going to kick this piece off with a walk through of what was happening with this particular SSD, and what was attempted so far to fix it:

IMG_0007.JPG

The Samsung 840 EVO is a consumer-focused TLC SSD. Normally TLC SSDs suffer from reduced write speeds when compared to their MLC counterparts, as writing operations take longer for TLC than for MLC (SLC is even faster). Samsung introduced a novel way of speeding things up with their TurboWrite caching method, which adds a fast SLC buffer alongside the slower flash. This buffer is several GB in size, and helps the 840 EVO maintain fast write speeds in most typical usage scenarios, but the issue with the 840 EVO is not its write speed – the problem is read speed. Initial reviews did not catch this issue as it only impacted data that had been stagnant for a period of roughly 6-8 weeks. As files aged their read speeds were reduced, starting from the speedy (and expected) 500 MB/sec and ultimately reaching a worst case speed of 50-100 MB/sec:

840 EVO 512 test hdtach-2-.png

There were other variables that impacted the end result, which further complicated the flurry of reports coming in from seemingly everywhere. The slow speeds turned out to be the result of the SSD controller working extra hard to apply error correction to the data coming in from flash that was (reportedly) miscalibrated at the factory. This miscalibration caused the EVO to incorrectly adapt to cell voltage drifts over time (an effect that occurs in all flash-based storage – TLC being the most sensitive). Ambient temperature could even impact the slower read speeds as the controller was working outside of its expected load envelope and thermally throttled itself when faced with bulk amounts of error correction.

900x900px-LL-4985de76_2014-09-1720.18.26TestresultsforC_0.png

An example of file read speed slowing relative to age, thanks to a tool developed by Techie007.

Once the community reached sufficient critical mass to get Samsung’s attention, they issued a few statements and ultimately pushed out a combination firmware and tool to fix EVO’s that were seeing this issue. The 840 EVO Performance Restoration Tool was released just under two months after the original thread on the Overclock.net forums was started. Despite a quick update a few weeks later, that was not a bad turnaround considering Intel took three months to correct a firmware issue of one of their own early SSDs. While the Intel patch restored full performance to their X25-M, the Samsung update does not appear to be faring so well now that users have logged a few additional months after applying their fix.

Continue reading our look at the continued problems with the Samsung 840 EVO SSD!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Today Samsung has lifted the review embargo on their new Portable SSD T1. This represents Samsung's first portable SSD, and aims to serve as another way to make their super speedy VNAND available. We first saw the Samsung T1 at CES, and I've been evaluating the performance if this little drive for the past week:

150115-125412.jpg

We'll dive more into the details as this review progresses.

Specifications:

specs-2.png

Packaging:

150115-124803.jpg

150115-124922.jpg

The T1 comes well packaged, with a small instruction manual and a flat style short USB 3.0 cable. The drive itself is very light - ours weighed in right at 1 ounce.

Continue reading our review of the Samsung Portable SSD T1 500GB unit!

Subject: Storage
Manufacturer: Drobo

Introduction

Drobo is frequently referred to as ‘the Apple of external storage products’. They got this name because their products go for the simplest possible out-of-the-box experience. Despite their simplicity, the BeyondRAID concept these units employ remains extremely robust and highly resistant to data loss in even the most extreme cases of drive failures and data loss. I reviewed the DroboPro 8-bay unit over 5 years ago and was so impressed by it that I continue to use one to this day (and it has never lost data, despite occasional hard drive failures).

Over those past 5 years since our review of the DroboPro, Drobo (then known as Data Robotics) has also had a bit of an Apple story. Their original CEO started the company but was ousted by the board in late 2009. He then started Connected Data in 2011, quickly growing to the point where they merged with Drobo in 2013. This was not just a merger of companies, it was a merger of their respective products. The original Transporter was only a single drive unit, where Drobo’s tech supercharged that personal cloud capability to scale all the way up to corporate environments.

Many would say that for that period where their original CEO was absent, Drobo’s products turned more towards profitability, perhaps too soon for the company, as the products released during that period were less than stellar. We actually got a few of those Drobos in for review, but their performance was so inconsistent that we spent more time trying to figure out what was causing the issues than completing a review we could stand behind. With their founder back in the CEO chair, Drobo's path was turned back to its roots - making a good, fast, and low cost product for their customers. This was what they wanted to accomplish back in 2009, but in many ways the available tech was not up to speed yet. USB 2.0 was the fastest widely available standard, aside from iSCSI over Gigabit (but that was pricey to implement and appeared in the DroboPro). Nowadays things are very different. USB 3.0 controllers are vastly more compatible and faster than they used to be, as is SATA controller hardware and ARM microcontrollers. These developments would ultimately enable Drobo to introduce what they wanted to in the first place:

DSC06284.JPG

This is the third generation 4-Bay Drobo. The 4-Bay model is what started it all for them, but was a bit underpowered and limited to USB 2.0 speeds. The second gen unit launched mid 2008, adding FireWire as a faster connection option, but it was still slower than most would have liked given its $500 price tag. This third generation unit promises to change all of that.

DSC06286.JPG

USB is once again the only connectivity option, but this time it’s USB 3.0. There have previously been other 5-bay Drobos with this as an option (Drobo S, S gen 2, 5D, Mini), but many of those units saw compatibility issues with some USB 3.0 host controllers. We experienced some of these same frustrating incompatibilities first hand, and can confirm those frustrations. Drobo is putting that behind them with a revised chipset, and today we will put it all to the test.

Read on for our full review of the new Drobo!

Subject: Storage
Manufacturer: Inateck

Introduction and Internals

We've seen USB 3.0 in devices for a few years now, but it has only more recently started taking off since controllers, drivers, and Operating Systems have incorporated support for the USB Attached SCSI ProtocolUASP takes care of one of the big disadvantages seen when linking high speed storage devices. USB adds a relatively long and multi-step path for each and every transaction, and the initial spec did not allow for any sort of parallel queuing. The 'Bulk-Only Transport' method was actually carried forward all the way from USB 1.0, and it simply didn't scale well for very low latency devices. The end result was that a USB 3.0 connected SSD performed at a fraction of its capability. UASP fixes that by effectively layering the SCSI protocol over the USB 3.0 link. Perhaps its biggest contributor to the speed boost is SCSI's ability to queue commands. We saw big speed improvements with the Corsair Flash Voyager GTX and other newer UASP enabled flash drives, but it's time we look at some ways to link external SATA devices using this faster protocol. Our first piece will focus on a product from Inateck - their FE2005 2.5" SATA enclosure:

DSC06272.JPG

This is a very simple enclosure, with a sliding design and a flip open door at the front.

DSC06274.JPG

Read on for our review!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Mid last year, Samsung introduced the 840 EVO. This was their evolutionary step from the 840 Pro, which had launched a year prior. While the Pro was a performance MLC SSD, the EVO was TLC, and for most typical proved just as speedy. The reason for this was Samsung’s inclusion of a small SLC cache on each TLC die. Dubbed TurboWrite, this write-back cache gave the EVO the best write performance of any TLC-based SSD on the market. Samsung had also introduced a DRAM cache based RAPID mode - included with their Magician value added software solution. The EVO was among the top selling SSDs since its launch, despite a small hiccup quickly corrected by Samsung.

Fast forward to June of this year where we saw the 850 Pro. Having tested the waters with 24-layer 3D VNAND, Samsung revises this design, increasing the layer count to 32 and reducing the die capacity from 128Gbit to 86Gbit. The smaller die capacity enables a 50% performance gain, stacked on top of the 100% write speed gain accomplished by the reduced cross talk of the 3D VNAND architecture. These changes did great things for the performance of the 850 Pro, especially in the lower capacities. While competing 120/128GB SSDs were typically limited to 150 MB/sec write speeds, the 128GB 850 Pro cruises along at over 3x that speed, nearly saturating the SATA interface. The performance might have been great, but so was the cost - 850 Pro’s have stuck around $0.70/GB since their launch, forcing budget conscious upgraders to seek competing solutions. What we needed was an 850 EVO, and now I can happily say here it is:

DSC06197.JPG

As the 840 EVO was a pretty big deal, I believe the 850 EVO has an equal chance of success, so instead of going for a capacity roundup, this first piece will cover the 120GB and 500GB capacities. A surprising number of our readers run a pair of smaller capacity 840 EVOs in a RAID, so we will be testing a matched pair of 850 EVOs in RAID-0. To demonstrate the transparent performance boosting of RAPID, I’ll also run both capacities through our full test suite with RAPID mode enabled. There is lots of testing to get through, so let’s get cracking!

Read on for the full review!

Subject: Editorial, Storage
Manufacturer: PC Perspective
Tagged: ssd, nand, Intel, flash, 3d

It has become increasingly apparent that flash memory die shrinks have hit a bit of a brick wall in recent years. The issues faced by the standard 2D Planar NAND process were apparent very early on. This was no real secret - here's a slide seen at the 2009 Flash Memory Summit:

microsoft-powerpoint-fms09-tut-2a-flash-memory-summit-2-728-.jpg

Despite this, most flash manufacturers pushed the envelope as far as they could within the limits of 2D process technology, balancing shrinks with reliability and performance. One of the largest flash manufacturers was Intel, having joined forces with Micron in a joint venture dubbed IMFT (Intel Micron Flash Technologies). Intel remained in lock-step with Micron all the way up to 20nm, but chose to hold back at the 16nm step, presumably in order to shift full focus towards alternative flash technologies. This was essentially confirmed late last week, with Intel's announcement of a shift to 3D NAND production.

progression-3-.png

Intel's press briefing seemed to focus more on cost efficiency than performance, and after reviewing the very few specs they released about this new flash, I believe we can do some theorizing as to the potential performance of this new flash memory. From the above illustration, you can see that Intel has chosen to go with the same sort of 3D technology used by Samsung - a 32 layer vertical stack of flash cells. This requires the use of an older / larger process technology, as it is too difficult to etch these holes at a 2x nm size. What keeps the die size reasonable is the fact that you get a 32x increase in bit density. Going off of a rough approximation from the above photo, imagine that 50nm die (8 Gbit), but with 32 vertical NAND layers. That would yield a 256 Gbit (32 GB) die within roughly the same footprint.

blog9_fig2.jpg

Representation of Samsung's 3D VNAND in 128Gbit and 86 Gbit variants.
20nm planar (2D) = yellow square, 16nm planar (2D) = blue square.

Image republished with permission from Schiltron Corporation.

It's likely a safe bet that IMFT flash will be going for a cost/GB far cheaper than the competing Samsung VNAND, and going with a relatively large 256 Gbit (vs. VNAND's 86 Gbit) per-die capacity is a smart move there, but let's not forget that there is a catch - write speed. Most NAND is very fast on reads, but limited on writes. Shifting from 2D to 3D NAND netted Samsung a 2x speed boost per die, and another effective 1.5x speed boost due to their choice to reduce per-die capacity from 128 Gbit to 86 Gbit. This effective speed boost came from the fact that a given VNAND SSD has 50% more dies to reach the same capacity as an SSD using 128 Gbit dies.

Now let's examine how Intel's choice of a 256 Gbit die impacts performance:

  • Intel SSD 730 240GB = 16x128 Gbit 20nm dies
    • 270 MB/sec writes and ~17 MB/sec/die
  • Crucial MX100 128GB = 8x128Gbit 16nm dies
    • 150 MB/sec writes and ~19 MB/sec/die
  • Samsung 850 Pro 128GB = 12x86Gbit VNAND dies
    • 470MB/sec writes and ~40 MB/sec/die

If we do some extrapolation based on the assumption that IMFT's move to 3D will net the same ~2x write speed improvement seen by Samsung, combined with their die capacity choice of 256Gbit, we get this:

  • Future IMFT 128GB SSD = 4x256Gbit 3D dies
    • 40 MB/sec/die x 4 dies = 160MB/sec

Even rounding up to 40 MB/sec/die, we can see that also doubling the die capacity effectively negates the performance improvement. While the IMFT flash equipped SSD will very likely be a lower cost product, it will (theoretically) see the same write speed limits seen in today's SSDs equipped with IMFT planar NAND. Now let's go one layer deeper on theoretical products and assume that Intel took the 18-channel NVMe controller from their P3700 Series and adopted it to a consumer PCIe SSD using this new 3D NAND. The larger die size limits the minimum capacity you can attain and still fully utilize their 18 channel controller, so with one die per channel, you end up with this product:

  • Theoretical 18 channel IMFT PCIE 3D NAND SSD = 18x256Gbit 3D dies
    • 40 MB/sec/die x 18 dies = 720 MB/sec
    • 18x32GB (die capacity) = 576GB total capacity

​​Overprovisioning decisions aside, the above would be the lowest capacity product that could fully utilize the Intel PCIe controller. While the write performance is on the low side by PCIe SSD standards, the cost of such a product could easily be in the $0.50/GB range, or even less.

DSC06167_DxO-.jpg

In summary, while we don't have any solid performance data, it appears that Intel's new 3D NAND is not likely to lead to a performance breakthrough in SSD speeds, but their choice on a more cost-effective per-die capacity for their new 3D NAND is likely to give them significant margins and the wiggle room to offer SSDs at a far lower cost/GB than we've seen in recent years. This may be the step that was needed to push SSD costs into a range that can truly compete with HDD technology.

Subject: Storage
Manufacturer: Plextor
Tagged: ssd, plextor, pcie, 256GB

Introduction, Specifications and Packaging

Introduction:

In recent years, Plextor has branched beyond their renowned lines of optical storage devices, and into the realm of SSDs. They have done fairly well so far, treading carefully on their selection of controllers and form factors. Their most recent offerings include the M6S and M6M (reviewed here), and are based on Marvell controllers coupled with Toshiba flash. Given that the most recent Marvell controllers are also available in a PCIe variant, Plextor also chose to offer their M6 series in PCIe half height and M.2 form factor. These last two offerings are not simply SATA SSDs bridged over to PCIe, they are natively PCIe 2.0 x2 (1 GB/s), which gives a nice boost over the current SATA limit of 6Gb/sec (600 MB/sec). Today we are going to kill two birds with one stone by evaluating the half-height PCIe version:

DSC06024.JPG

As you can see, this is nothing more than the M.2 version on a Plextor branded interposer board. All results of this review should be identical to the bare M.2 unit plugged into a PCIe 2.0 x2 capable M.2 port on either a motherboard or mobile device. Note that those devices need to support the 2280 form factor, which is 80mm in length.

15-m.2-bracket-in-board-with-ssd.jpg

Here's the M.2 version installed on an ASUS X99-Deluxe, as tested by Morry.

Read on for the full review!

Subject: Storage
Manufacturer: Corsair

Introduction, Specifications and Packaging

Introduction:

During our coverage of the Flash Memory Summit, we spotted the new Phison PS3110-S10 controller:

DSC04260.JPG

At that time we only knew that Phison was going to team up with another SSD manufacturer to get these to market. We now know that manufacturer is Corsair, and their new product is to be called the Neutron XT. How do we know this? Well, we've got one sitting right here:

DSC06034.JPG

While the Neutron has not officially launched (pricing is not even available), we have been afforded an early look into the performance of this new controller / SSD. While this is suspected to be a cost effective entry into the SSD marketplace, for now all we can do is evaluate the performance, so let's get to it!

Read on for the full review!