Subject: Editorial, Storage
Manufacturer: PC Perspective

What you never knew you didn't know

While researching a few upcoming SD / microSD product reviews here at PC Perspective, I quickly found myself swimming in a sea of ratings and specifications. This write up was initially meant to explain and clarify these items, but it quickly grew into a reference too large to include in every SD card article, so I have spun it off here as a standalone reference. We hope it is as useful to you as it will be to our upcoming SD card reviews.

SD card speed ratings are a bit of a mess, so I'm going to do my best to clear things up here. I'll start with classes and grades. These are specs that define the *minimum* speed a given SD card should meet when reading or writing (both directions are used for the test). As with all flash devices, the write speed tends to be the more limiting factor. Without getting into gory detail, the tests used assume mostly sequential large writes and random reads occurring at no smaller than the minimum memory unit of the card (typically 512KB). The tests match the typical use case of an SD card, which is typically writing larger files (or sequential video streams), with minimal small writes (file table updates, etc).

Speed Class


In the above chart, we see speed 'Class' 2, 4, 6, and 10. The SD card spec calls out very specific requirements for these specs, but the gist of it is that an unfragmented SD card will be able to write at a minimum MB/s corresponding to its rated class (e.g. Class 6 = 6 MB/s minimum transfer speed). The workload specified is meant to represent a typical media device writing to an SD card, with buffering to account for slower FAT table updates (small writes). With higher bus speed modes (more on that later), we also get higher classes. Older cards that are not rated under this spec are referred to as 'Class 0'.

Speed Grade

As we move higher than Class 10, we get to U1 and U3, which are referred to as UHS Speed Grades (contrary to the above table which states 'Class') in the SD card specification. The changeover from Class to Grade has something to do with speed modes, which also relates with the standard capacity of the card being used:


U1 and U3 correspond to 10 and 30 MB/s minimums, but the test conditions are slightly different for these specs (so Class 10 is not *exactly* the same as a U1 rating, even though they both equate to 10 MB/sec). Cards not performing to U1 are classified as 'Speed Grade 0'. One final note here is that a U rating also implies a UHS speed mode (see the next section).

Read on as we decrypt all of the many specs and ratings present on SD and microSD cards!

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging


What's better than an 18-channel NVMe PCIe Datacenter SSD controller in a Half Height Half Length (HHHL) package? *TWO* 18-channel NVMe PCIe Datacenter controllers in a HHHL package! I'm sure words to this effect were uttered in an Intel meeting room some time in the past, because such a device now exists, and is called the SSD DC P3608:


The P3608 is essentially a pair of P3600's glued together on a single PCB, much like how some graphics cards merge a pair of GPUs to act with the performance of a pair of cards combined into a single one:


What is immediately impressive here is that Intel has done this same trick within 1/4 of the space (HHHL compared to a typical graphics card). We can only imagine the potential of a pair of P3600 SSDs, so lets get right into the specs, disassembly, and testing!

Read on for the full review!

Subject: Storage
Manufacturer: Western Digital

Introduction and Specifications


It has been a while since we took a look at some hard drives here at PC Perspective. While seemingly everyone is pushing hard into Solid State Storage, those spinning platters have gotten the computer industry by for several decades, and they won't be going away any time soon so long as magnetic domains can store bits for cheaper than electrons can. SSDs have been eating away at the market for OS and single drive mobile needs, but when it comes to bulk storage, nothing beats a great hard drive for the money. Since many users would rather avoid maintaining a large array of drives, getting the capacity of each 3.5" unit higher is still a need, especially for storage hungry consumers. Enterprise units have been pushing into 8TB territory lately, but the consumer sweet spot currently remains at 6TB. Western Digital entered this area in July of last year, pushing their popular Green and Red lines up to 6TB. While the capacity was great, those two lines are mean to be power saving, slower spinning drives. When platter speeds are low, the laws of physics (and of rotational latency) kick in and dictate that they could never perform as well as their 7200 RPM counterparts.


...and now they have filled that gap, with their Black and Red Pro models now made available in up to 6TB capacities. To clarify the product lines here, the Green and Black products are intended for usage as a single drive, while the Red and Red Pro are meant for operating in NAS devices and use in a RAID. The two drives in this review are the faster spinning models, so we should see better performance all around. Spinning those platters faster means more power drawn and more heat generated by air friction across the platters, as we can look into below:


Western Digital Red Pro 6TB:

  • Model: WD6001FFWX
  • Max Sequential Read: 214 MB/s
  • Form Factor: 3.5”
  • Interface Type: SATA 6.0 Gb/s (SATA 3)
  • UBER: <1 in 1015
  • Power (active/idle/standby): 10.6W/7.4W/1.6W
  • Warranty: 5 years

Western Digital Black 6TB:

  • Model: WD6001FZWX
  • Max Sequential: 218 MB/s
  • Form Factor: 3.5”
  • Interface Type: SATA 6.0 Gb/s (SATA 3)
  • UBER: <1 in 1014
  • Power (active/idle/standby): 10.6W/7.6W/1.6W
  • Warranty: 5 years

For comparison, the slower spinning 6TB Red and Green models run at 5.3W/3.4W/0.4W. Lesson learned - moving from ~5400 RPM to 7200 RPM roughly doubles the power draw of a high capacity 3.5" HDD. Other manufacturers are doing things like hermetically sealing their drives and filling them with Helium, but that is a prohibitively expensive proposition for consumer / small business drives, which is what the Black and Red Pro lines are meant to satisfy. It has also been proven that Helium filled drives are not the best if their track geometry is not optimized as well as it could be.

Subject: Storage
Manufacturer: Intel
Tagged: Z170, Skylake, rst, raid, Intel

A quick look at storage

** This piece has been updated to reflect changes since first posting. See page two for PCIe RAID results! **

Our Intel Skylake launch coverage is intense! Make sure you hit up all the stories and videos that are interesting for you!

When I saw the small amount of press information provided with the launch of Intel Skylake, I was both surprised and impressed. The new Z170 chipset was going to have an upgraded DMI link, nearly doubling throughput. DMI has, for a long time, been suspected as the reason Intel SATA controllers have pegged at ~1.8 GB/sec, which limits the effectiveness of a RAID with more than 3 SSDs. Improved DMI throughput could enable the possibility of a 6-SSD RAID-0 that exceeds 3GB/sec, which would compete with PCIe SSDs.


Speaking of PCIe SSDs, that’s the other big addition to Z170. Intel’s Rapid Storage Technology was going to be expanded to include PCIe (even NVMe) SSDs, with the caveat that they must be physically connected to PCIe lanes falling under the DMI-connected chipset. This is not as big of as issue as you might think, as Skylake does not have 28 or 40 PCIe lanes as seen with X99 solutions. Z170 motherboards only have to route 16 PCIe lanes from the CPU to either two (8x8) or three (8x4x4) PCIe slots, and the remaining slots must all hang off of the chipset. This includes the PCIe portion of M.2 and SATA Express devices.

PCH storage config.png

Continue reading our preview of the new storage options on the Z170 chipset!!

Subject: Storage
Manufacturer: OCZ

Introduction, Specifications and Packaging


Since their acquisition by Toshiba in early 2014, OCZ has gradually transitioned their line of SSD products to include parts provided by their parent company. Existing products were switched over to Toshiba flash memory, and that transition went fairly smoothly, save the recent launch of their Vector 180 (which had a couple of issues noted in our review). After that release, we waited for the next release from OCZ, hoping for something fresh, and that appears to have just happened:


OCZ sent us a round of samples for their new OCZ Trion 100 SSD. This SSD was first teased at Computex 2015. This new model would not only use Toshiba sourced flash memory, it would also displace the OCZ / Indilinx Barefoot controller with Toshiba's own. Then named 'Alishan', this is now officially called the 'Toshiba Controller TC58'. As we found out during Computex, this controller employs Toshiba's proprietary Quadruple Swing-By Code (QSBC) error correction technology:


Error correction tech gets very wordy, windy, and technical and does so very quickly, so I'll do my best to simplify things. Error correction is basically some information interleaved within the data stored on a given medium. Pretty much everything uses it in some form or another. Some Those 700MB CD-R's you used to burn could physically hold over 1GB of data, but all of that extra 'unavailable' space was error correction necessary to deal with the possible scratches and dust over time. Hard drives do the same sort of thing, with recent changes to how the data is interleaved. Early flash memory employed the same sort of simple error correction techniques initially, but advances in understanding of flash memory error modes have led to advances in flash-specific error correction techniques. More advanced algorithms require more advanced math that may not easily lend itself to hardware acceleration. Referencing the above graphic, BCH is simple to perform when needed, while LDPC is known to be more CPU (read SSD controller CPU) intensive. Toshiba's proprietary QSB tech claims to be 8x more capable of correcting errors, but what don't know what, if any, performance penalty exists on account of it.

We will revisit this topic a bit later in the review, but for now lets focus on the other things we know about the Trion 100. The easiest way to explain it is this is essentially Toshiba's answer to the Samsung EVO series of SSDs. This Toshiba flash is configured in a similar fashion, meaning the bulk of it operates in TLC mode, while a portion is segmented off and operates as a faster SLC-mode cache. Writes first go to the SLC area and are purged to TLC in the background during idle time. Continuous writes exceeding the SLC cache size will drop to the write speed of the TLC flash.

Read on for the full review!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging


Where are all the 2TB SSDs? It's a question we've been hearing since they started to go mainstream seven years ago. While we have seen a few come along on the enterprise side as far back as 2011, those were prohibitively large, expensive, and out of reach of most consumers. Part of the problem initially was one of packaging. Flash dies simply were not of sufficient data capacity (and could not be stacked in sufficient quantities) as to reach 2TB in a consumer friendly form factor. We have been getting close lately, with many consumer focused 2.5" SATA products reaching 1TB, but things stagnated there for a bit. Samsung launched their 850 EVO and Pro in capacities up to 1TB, with plenty of additional space inside the 2.5" housing, so it stood to reason that the packaging limit was no longer an issue, so why did they keep waiting?

The first answer is one of market demand. When SSDs were pushing $1/GB, the thought of a 2TB SSD was great right up to the point where you did the math and realized it would cost more than a typical enthusiast-grade PC. That was just a tough pill to swallow, and market projections showed it would take more work to produce and market the additional SKU than it would make back in profits.

The second answer is one of horsepower. No, this isn't so much a car analogy as it is simple physics. 1TB SSDs had previously been pushing the limits of controller capabilities of flash and RAM addressing, as well as handling Flash Translation Layer lookups as well as garbage collection and other duties. This means that doubling a given model SSD capacity is not as simple as doubling the amount of flash attached to the controller - that controller must be able to effectively handle twice the load.

With all of that said, it looks like we can finally stop asking for those 2TB consumer SSDs, because Samsung has decided to be the first to push into this space:


Today we will take a look at the freshly launched 2TB version of the Samsung 850 EVO and 850 Pro. We will put these through the same tests performed on the smaller capacity models. Our hope is to verify that the necessary changes Samsung made to the controller are sufficient to keep performance scaling or at least on-par with the 1TB and smaller models of the same product lines.

Read on for the full review!

Introduction, Specifications, and Packaging

Lexar is Micron’s brand covering SD Cards, microSD Cards, USB flash drives, and card readers. Their card readers are known for being able to push high in the various speed grades, typically allowing transfers (for capable SD cards) much faster than what a typical built-in laptop or PC SD card reader is capable of. Today we will take a look at the Lexar ‘Professional Workflow’ line of flash memory connectivity options from Lexar.


This is essentially a four-bay hub device that can accept various card readers or other types of devices (a USB flash storage device as opposed to just a reader, for example). The available readers range from SD to CF to Professional Grade CFast cards capable of over 500 MB/sec.

We will be looking at the following items today:

  • Professional Workflow HR2
    • Four-bay Thunderbolt™ 2/USB 3.0 reader and storage drive hub
  • Professional Workflow UR1
    • Three-slot microSDHC™/microSDXC™ UHS-I USB 3.0 reader
  • Professional Workflow SR1
    • SDHC™/SDXC™ UHS-I USB 3.0 reader
  • Professional Workflow CFR1
    • CompactFlash® USB 3.0 reader
  • Professional Workflow DD256
    • 256GB USB 3.0 Storage Drive

Note that since we were sampled these items, Lexar has begun shipping a newer version of the SR1. The SR2 is a SDHC™/SDXC™ UHS-II USB 3.0 reader. Since we had no UHS-II SD cards available to test, this difference would not impact any of our testing speed results. There is also an HR1 model which has only USB 3.0 support and no Thunderbolt, coming in at a significantly lower cost when compared with the HR2 (more on that later).

Continue reading for our review of all of the above!

Manufacturer: Inateck

One hub to rule them all!

Inateck sent along a small group of connectivity devices for us to evaluate. One such item was their HB7003 7 port USB 3.0 hub:


This is a fairly standard powered USB hub with one exception - high speed charging. Thanks to an included 36W power adapter and support for Battery Charging Specification 1.2, the HB7003 can charge devices at up to 1.5 Amps at 5 Volts. This is not to be confused with 'Quick Charging', which uses a newer specification and more unique hardware.


  • L/W/H: 6.06" x 1.97" x 0.83"
  • Ports: 7
  • Speed: USB 3.0 5Gbps (backwards compatible with USB 2.0 and 1.1)
  • Windows Vista / OSX 10.8.4 and newer supported without drivers



Densely packed brown box. Exactly how such a product should be packaged.


Power adapter (~6 foot cord), ~4.5 foot USB 3.0 cord, instruction manual, and the hub itself.


Some quick charging tests revealed that the HB7003 had no issue exceeding 1.0 Amp charging rates, but fell slightly short of a full 1.5A charge rate due to the output voltage falling a little below the full 5V. Some voltage droop is common with this sort of device, but it did have some effect. In one example, an iPad Air drew 1.3A (13% short of a full 1.5A). Not a bad charging rate considering, but if you are expecting a fast charge of something like an iPad, its dedicated 2.1A charger is obviously the better way to go.

Performance and Usability:


As you can see above, even though the port layout is on a horizontal plane, Inateck has spaced the ports enough that most devices should be able to sit side by side. Some wider devices may take up an extra port, but with seven to work with, the majority of users should have enough available ports even if one or two devices overlap an adjacent port. In the above configuration, we had no issue saturating the throughput to each connected device. I also stepped up to a Samsung USB T1 which also negotiated at the expected USB 3.0 speeds.

Pricing and Availability

Inateck is selling it these direct from their Amazon store (link above).



  • Clean design 7-port USB 3.0 hub.
  • Port spacing sufficient for most devices without interference.
  • 1.5A per port charging.
  • Low cost.


  • 'Wall wart' power adapter may block additional power strip outlets.

At just $35, the Inateck HB7003 is a good quality 7-port USB 3.0 hub. All ports can charge devices at up to 1.5A while connecting them to the host at data rates up to 5 Gbps. The only gripe I had was that the hub was a bit on the light weight side and as a result it easily slid around on the desk when the attached cords were disturbed, but some travelers might see light weight as a bonus. Overall this is a simple, no frills USB 3.0 hub that gets the job done nicely.

Subject: Storage
Manufacturer: Inateck

You love the dock!

Today we'll take a quick look at the Inateck FD2002 USB 3.0 to dual SATA dock:


This is a UASP capable dock that should provide near full SATA 6Gb/sec throughput to each of two connected SATA SSDs or HDDs. This particular dock has no RAID capability, but exchanges that for an offline cloning / duplication mode. While the FD2002 uses ASMedia silicon to perform these tasks, similar limitations are inherent in competing hardware fron JMicron, which comes with a similar toggle of either RAID or cloning capability. Regardless, Inateck made the logical choice with the FD2002, as hot swap docks are not the best choice for hardware RAID.

ASM1153E ASM1091R FD2002.jpg

The pair of ASMedia chips moving data within the FD2002. The ASM1153E on the left couples the USB 3.0 link to the ASM1091R, which multiplexes to the pair of SATA ports and apparently adds cloning functionality.

Continue reading for our review of the Inateck FD2002 USB 3.0 Dual SATA Dock!

Subject: Storage
Manufacturer: Intel
Tagged: SSD 750, pcie, NVMe, IOPS, Intel

It's been a while since we reviewed Intel's SSD 750 PCIe NVMe fire-breathing SSD, and since that launch we more recently had some giveaways and contests. We got the prizes in to be sent out to the winners, but before that happened, we had this stack of hardware sitting here. It just kept staring down at me (literally - this is the view from my chair):


That stack of 5 Intel SSD 750’s was burning itself into my periphery as I worked on an upcoming review of the new Seiki Pro 40” 4K display. A few feet in the other direction was our CPU testbed machine, an ASUS X99-Deluxe with a 40-lane Intel Core i7-5960 CPU installed. I just couldn't live with myself if we sent these prizes out without properly ‘testing’ them first, so then this happened:


This will not be a typical complete review, as this much hardware in parallel is not realistically comparable to even the craziest power user setup. It is more just a couple of hours of playing with an insane hardware configuration and exploring the various limits and bottlenecks we were sure to run into. We’ll do a few tests in a some different configurations and let you know what we found out.

Continue reading for the results of our little experiment!

A substantial upgrade for Thunderbolt

Today at Computex, Intel took the wraps off of the latest iteration of Thunderbolt, a technology that I am guessing many of you thought was dead in the water. It turns out that's not the case, and this new set of features that Thunderbolt 3 offers may in fact push it over the crest and give it the momentum needed to become a useable and widespread standard.

First, Thunderbolt 3 starts with a new piece of silicon, code named Alpine Ridge. Not only does Alpine Ridge increase the available Thunderbolt bandwidth to 40 Gbps but it also adds a native USB 3.1 host controller on the chip itself. And, as mobile users will be glad to see, Intel is going to start utilizing the new USB Type-C (USB-C) connector as the standard port rather than mini DisplayPort.


This new connector type, that was already a favorite among PC Perspective staff because of its size and its reversibility, will now be the way connectivity and speed increases this generation with Thunderbolt. This slide does a good job of summarizing the key take away from the TB3 announcement: 40 Gbps, support for two 4K 60 Hz displays, 100 watt (bi-directional) charging capability, 15 watt device power and support for four protocols including Thunderbolt, DisplayPort, USB and PCI Express.


Protocol support is important and Thunderbolt 3 over USB-C will be able to connect directly to a DisplayPort monitor, to an external USB 3.1 storage drive, an old thumb drive or a new Thunderbolt 3 docking station. This is truly unrivaled flexibility from a single connector. The USB 3.1 controller is backward compatible as well: feel free to connect any USB device to it that you can adapt to the Type-C connection.


From a raw performance perspective Thunderbolt 3 offers a total of 40 Gbps of bi-directional bandwidth, twice that of Thunderbolt 2 and 4x what we get with USB 3.1. That offers users the ability to combine many different devices, multiple displays and network connections and have plenty of headroom.


With Thunderbolt 3 you get twice as much raw video bandwidth, two DP 1.2 streams, allowing you to run not just a single 4K display at 60 Hz but two of them, all over a single TB3 cable. If you want to connect a 5K display though, you will be limited to just one of them.


For mobile users, which I think is the area where Thunderbolt 3 will be the most effective, the addition of USB 3.1 allows for charging capability up to 100 watts. This is in addition to the 15 watts of power that Thunderbolt provides to devices directly - think external storage, small hubs/docks, etc.

Continue reading our preview of the new Thunderbolt 3 technology!!

Subject: Storage
Manufacturer: PC Perspective

Introduction, Specifications and Packaging


Back in November of last year, we tested the Corsair Neutron XT, which was the first product to feature the Phison PS3110-S10 controller. First spotted at Flash Memory Summit, the S10 sports the following features:

  • Quad-core controller - Quad-core CPU dedicates three cores just to managing flash and maintaining performance
  • Maximum throughput and I/O - Offers speeds of up to 560 MB/s read and 540 MB/s write and 100K IOPs on read and 90 IOPs on write, saturating the SATA 6Gbps bus
  • End-to-end Data Path Protection - Enterprise level CRC/ECC corrects internal soft errors as well as detecting and correcting any errors that may arise between the DRAM, controller, and flash
  • SmartECC™ - Reconstructs defective/faulty pages when regular ECC fails
  • SmartRefresh™ - Monitors block ECC health status and refreshes blocks periodically to improve data retention
  • SmartFlush™ - Minimizes time data spends in cache to ensure data retention in the event of power loss
  • Advanced wear-leveling and garbage collection

Corsair was Phison's launch partner, but as that was a while ago, we now have two additional SSD models launching with the S10 at their core:


To the left is the Kingston HyperX Savage. To the right is the Patriot Ignite. They differ in flash memory types used, available capacities, and the stated performance specs vary slightly among them. Today we'll compare them against the Neutron XT as well as a selecton of other SATA SSDs.

Read on for the full review!

Subject: Storage
Manufacturer: Intel

Don't be afraid of PCIe or NVMe

In very early April, Intel put a shot across the bow of the storage world with the release of the SSD 750 Series of storage devices. Using the PCI Express bus but taking advantage of the new NVMe (Non-Volatile Memory Express) protocol, it drastically upgrades the capabilities of storage within modern PC platforms. In Allyn's review, for example, we saw read data transfer rates cross into the 2.6 GB/s range in sequential workloads and write rates over 1.2 GB/s sequentially. Even more impressive is the random I/O performance where the SSD 750 is literally 2x the speed of previous PCIe SSD options.


A couple of weeks later we posted a story looking into the compatibility of the SSD 750 with different motherboards and chipsets. We found that booting from the SSD 750 Series products is indeed going to require specific motherboards and platforms simply due to the "new-ness" of the NVMe protocol. Officially, Intel is only going to support Z97 and X99 chipsets today but obviously you can expect all future chipsets to have proper NVMe integration. We did find a couple of outliers that allowed for bootability with the SSD 750, but I wouldn't count on it.

Assuming you have a Z97/X99 motherboard that properly supports NVMe drives, of which ASUS, MSI and Gigabyte seem to be on top of, what are the steps and processes necessary to get your system up and running on the Intel SSD 750? As it turns out, it's incredibly simple.

Step 1

Make sure you have enabled NVMe in the latest BIOS/UEFI. The screenshot below shows our ASUS X99-Deluxe motherboard used during testing and that it is properly recognizing the device. There was no specific option to ENABLED NVMe here though we have seen instances where that is required.

Continue reading our overview of installing Windows on the Intel SSD 750 Series!!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging


There's been a lot of recent talk about the Samsung SM951 M.2 PCIe SSD. It was supposed to launch as an NVMe product, but ended up coming out in AHCI form. We can only assume that Samsung chose to hold back on their NVMe-capable iteration because many devices are unable to boot fron an NVMe SSD. Sitting back for a few months was a wise choice in this case, as an NVMe-only version would limit the OEM products that could equip it. That new variant did finally end up launching, and we have rounded it and the other Samsung M.2 PCIe SSDs up for some much awaited testing:


I'll be comparing the three above units against some other PCIe SSDs, including the Intel SSD 750, Kingston HyperX Predator, G.Skill Phoenix Blade, Plextor M6e Black, and more!

Continue reading our review of these hot new M.2 products!

Subject: Storage
Manufacturer: ICY DOCK

Introduction, Specifications and Packaging


The other day we took a look at the ICY DOCK ToughArmor MB996SP-6SB and ICYBento MB559U3S-1S. Today we'll move onto a couple of larger products in their lineup:


To the left is the ICYCube MB561U3S-4S, which is a 4-bay eSATA / USB 3.0 JOBD enlcosure. To the right is the ICYRaid MB662U3-2S, which is a 2-bay USB 3.0 JBOD/Big/RAID-0/RAID-1 enclosure.

Read on for our review!

Subject: Storage
Manufacturer: Samsung


The tale of the Samsung 840 EVO is a long and winding one, with many hitches along the way. Launched at the Samsung 2013 Global SSD Sumit, the 840 EVO was a unique entry into the SSD market. Using 19nm planar TLC flash, the EVO would have had only mediocre write performance if not for the addition of a TurboWrite cache, which added 3-12GB (depending on drive capacity) of SLC write-back cache. This gave the EVO great all around performance in most consumer usage scenarios. It tested very well, was priced aggressively, and remained our top recommended consumer SSD for quite some time. Other editors here at PCPer purchased them for their own systems. I even put one in the very laptop on which I'm writing this article.


An 840 EVO read speed test, showing areas where old data had slowed.

About a year after release, some 840 EVO users started noticing something weird with their systems. The short version is that data that sat unmodified for a period of months was no longer able to be read at full speed. Within a month of our reporting on this issue, Samsung issued a Performance Restoration Tool, which was a combination of a firmware and a software tool that initiated a 'refresh', where all stale data was rewritten, restoring read performance back to optimal speeds. When the tool came out, many were skeptical that the drives would not just slow down again in the future. We kept an eye on things, and after a few more months of waiting, we noted that our test samples were in fact slowing down again. We did note it was taking longer for the slow down to manifest this time around, and the EVOs didn't seem to be slowing down to the same degree, but the fact remained that the first attempt at a fix was not a complete solution. Samsung kept up their end of the bargain, promising another fix, but their initial statement was a bit disappointing, as it suggested they would only be able to correct this issue with a new version of their Samsung Magician software that periodically refreshed the old data. This came across as a band-aid solution, but it was better than nothing.

Read on for our full evaluation of the new firmware and Magician 4.6!

Subject: Storage
Manufacturer: ICY DOCK

Introduction, Specifications and Packaging


Today we're taking a quick look at a pair of drive enclosures sent to us by ICY DOCK.


To the left is the ToughArmor MB996SP-6SB, which is a 5.25" bay hot swap chassis capable of mounting 6 2.5" SATA devices. To the right is the ICYBento MB559U3S-1S, which is a UASP external 3.5" HDD enclosure connectable by either USB 3.0 or eSATA.


ToughArmor MB996SP-6SB

ToughArmor MB996SP-6SB specs.png

ICYBento MB559U3S-1S (also available in black)

ICYBento MB559U3S-1S specs.png


ToughArmor MB996SP-6SB


We did note that the spec sheet and manual included SATA power to molex adapters, but we found no such adapters in the box. We may have received old stock, as the web site appears more up to date than the paper manual we received.

**update** ICYDock reached out and let me know that all shipping boxes of this part should come with a pair of molex to SATA power cables. Our sample came from their techs and they must have forgot to put those cables back into our box.

ICYBento MB559U3S-1S (also available in black)


Both items were well packaged with no shipping damage noted.

Read on for our review!

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Editor's note: We are hosting a live stream event with our friends at Intel's SSD group today to discuss the new SSD 750 Series launch and to giveaway a couple of the 400GB units as well! Be sure you stop by to ask quesitons, learn about the technology and have a chance to win some hardware!!


Intel has a habit of overlapping their enterprise and consumer product lines. Their initial X25-M was marketed to both consumer and enterprise, with heavier workloads reserved for the X25-E. Their SSD 320 Series was also spec'd for both consumer and enterprise usage. Their most recent SSD 730 Series was actually an overclocked version of their SSD DC S3500 units. Clearly this is an established trend for Intel, so when they dominated flash memory performance with the SSD DC P3700 launch last year, pretty much everyone following these sorts of things eagerly waited in anticipation of a consumer release.

While they were hard to find outside of enterprise supply chains, some dedicated users picked up that enterprise part for their enthusiast systems, but many were disappointed as the P3700's enterprise hardware and firmware conflicted with many consumer motherboards' BIOS, rendering it unbootable for some and causing address space conflicts for others. In short, the P3700 was a great product that simply did not function properly with most consumer motherboards. All anyone could do was wait for Intel to spin a consumer product from this enterprise part, and that day is today:


This is the add-in card version of the new Intel SSD 750 Series that brings NVMe technology and insane performance levels to consumers at a cost that is more affordable than you might think.


As with the enterprise variant, Intel chose to launch the SSD 750 Series in the familiar HHHL PCIe x4 form factor as well as a 2.5" SFF-8639 packaging. The 2.5" model contains the exact same set of components, just rearranged into a smaller device.


Despite being 2.5", this is not a SATA device. While the connector may look similar, it is *very* different:


As you can see above, SFF-8639 further extends on the familiar SATA power and data connections, which had already been extended a few times to add additional SAS data lines. The new spec adds a complete row of pins on the back side of the connector to support four lanes of PCIe. This means the SFF variant of the SSD 750 will perform identically to the PCIe half-height card version. Since SFF-8639 was born as an enterprise spec, one question remains - how do you connect it to a consumer desktop motherboard? Well, desktop motherboards are coming with M.2 ports that can support up to PCIe 3.0 x4, so all you really need is a simple way to get from point A to point B:


Pictured above (left) is the ASUS 'Hyper Kit' adapter PCB, which was sampled to us with their new Sabertooth X99 motherboard just for testing these new 2.5" devices. The connector you see at the right may look familiar, as it is an internal Mini-SAS HD (SFF-8643) cable commonly used with high end SAS RAID cards. Intel is basically borrowing the physical spec, but rewiring those four SAS lanes over to the PCIe pins of the SFF-8639 connector at the other end of the cable.

Continue reading our review of the Intel SSD 750 Series NVMe 1.2TB PCIe drives!!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging


Following the same pattern that Samsung led with the 840 Pro and 840 EVO, history has repeated itself with the 850 Pro and 850 EVO. With the 850 EVO launching late last year and being quite successful, it was only a matter of time before Samsung expanded past the 2.5" form factor for this popular SSD. Today is that day:


Today we will be looking at the MSATA and M.2 form factors. To clarify, the M.2 units are still using a SATA controller and connection, and must therefore be installed in a system capable of linking SATA lanes to its M.2 port. As both products are SATA, the DRAM cache based RAPID mode included with their Magician value added software is also available for these models. We won't be using RAPID for this review, but we did take a look at it in a prior article.

Given that 850 EVOs use VNAND - a vastly different technology than the planar NAND used in the 840 EVO, we suspect it is not subject to the same flash cell drift related issues (hopefully to be corrected soon) in the 840 EVO. Only time will tell for sure on that front, but we have not see any of those issues present in 850 EVO models since their launch.


Cross sectional view of Samsung's 32-layer VNAND. Photo by TechInsights.

Samsung sampled us the M.2 SATA in 120GB and 500GB, and the MSATA in 120GB and 1TB. Since both are SATA-based, these are only physical packaging differences. The die counts are the same as the 2.5" desktop counterparts. While the pair of 120GB models should be essentially identical, we'll throw both in with the results to validate the slight differences in stated specs below.

Continue reading our review of these new Samsung 850 EVOs!!

Subject: Storage
Manufacturer: OCZ Storage Solutions

Introduction, Specifications and Packaging


OCZ has been on a fairly steady release track since their aquisition by Toshiba. Having previously pared down their product lines, taking a minimalist approach, the other half of that cycle has taken place with releases like the OCZ AMD Radeon R7. Today we see another addition to OCZ's lineup, in the form of a newer Vector - the Vector 180 Series:


Today we will run all three available capacities (240GB, 480GB, and 960GB) through our standard round of testing. I've thrown in an R7 as a point of comparison, as well as a hand full of the competition.


OCZ Vector 180 slides - 7.jpg

Here are the specs from OCZ's slide presentation, included here as it gives a good spec comparison across OCZ's SATA product range.



Standard packaging here. 3.5" adapter bracket and Acronis 2013 cloning software product key included.

Continue reading our review of the new OCZ Vector 180 SSD!!