Author:
Subject: Processors, Mobile
Manufacturer: Intel

SoFIA, Cherry Trail Make Debuts

Mobile World Congress is traditionally dominated by Samsung, Qualcomm, HTC, and others yet Intel continues to make in-roads into the mobile market. Though the company has admittedly lost a lot of money during this growing process, Intel pushes forward with today's announcement of a trio of new processor lines that keep the Atom brand. The Atom x3, the Atom x5, and the Atom x7 will be the company's answer in 2015 for a wide range of products, starting at the sub-$75 phone market and stretching up to ~$400 tablets and all-in-ones.

slides01.jpg

There are some significant differences in these Atom processors, more than the naming scheme might indicate.

Intel Atom x3 SoFIA Processor

For years now we have questioned Intel's capability to develop a processor that could fit inside the thermal envelope that is required for a smartphone while also offering performance comparable to Qualcomm, MediaTek, and others. It seemed that the x86 architecture was a weight around Intel's ankles rather than a float lifting it up. Intel's answer was the development of SoFIA, (S)mart (o)r (F)eature phone with (I)ntel (A)rchitecture. The project started about 2 years ago leading to product announcements finally reaching us today. SoFIA parts are "designed for budget smartphones; SoFIA is set to give Qualcomm and MediaTek a run for their money in this rapidly growing part of the market."

slides02.jpg

The SoFIA processors are based on the same Silvermont architecture as the current generation of Atom processors, but they are more tuned for power efficiency. Originally planned to be a dual-core only option, Intel has actually built both dual-core and quad-core variants that will pair with varying modem options to create a combination that best fit target price points and markets. Intel has partnered with RockChip for these designs, even though the architecture is completely IA/x86 based. Production will be done on a 28nm process technology at an unnamed vendor, though you can expect that to mean TSMC. This allows RockChip access to the designs, to help accelerate development, and to release them into the key markets that Intel is targeting.

Continue reading our look at the new Intel Atom x3, x5 and x7 Processors!!

Author:
Subject: Processors
Manufacturer: AMD

AMD Details Carrizo Further

Some months back AMD introduced us to their “Carrizo” product.  Details were slim, but we learned that this would be another 28 nm part that has improved power efficiency over its predecessor.  It would be based on the new “Excavator” core that will be the final implementation of the Bulldozer architecture.  The graphics will be based on the latest iteration of the GCN architecture as well.  Carrizo would be a true SOC in that it integrates the southbridge controller.  The final piece of information that we received was that it would be interchangeable with the Carrizo-L SOC, which is a extremely low power APU based on the Puma+ cores.

car_01.jpg

A few months later we were invited by AMD to their CES meeting rooms to see early Carrizo samples in action.  These products were running a variety of applications very smoothly, but we were not informed of speeds and actual power draw.  All that we knew is that Carrizo was working and able to run pretty significant workloads like high quality 4K video playback.  Details were yet again very scarce other than the expected timeline of release, the TDP ratings of these future parts, and how it was going to be a significant jump in energy efficiency over the previous Kaveri based APUs.

AMD is presenting more information on Carrizo at the ISSCC 2015 conference.  This information dives a little deeper into how AMD has made the APU smaller, more power efficient, and faster overall than the previous 15 watt to 35 watt APUs based on Kaveri.  AMD claims that they have a product that will increase power efficiency in a way not ever seen before for the company.  This is particularly important considering that Carrizo is still a 28 nm product.

Click here to read more about AMD's ISSCC presentation on Carrizo!

Author:
Manufacturer: Intel

Intel Pushes Broadwell to the Next Unit of Computing

Intel continues to invest a significant amount of money into this small form factor product dubbed the Next Unit of Computing, or NUC. When it was initially released in December of 2012, the NUC was built as an evolutionary step of the desktop PC, part of a move for Intel to find new and unique form factors that its processors can exist in. With a 4" x 4" motherboard design the NUC is certainly a differentiating design and several of Intel's partners have adopted it for products of their: Gigabyte's BRIX line being the most relevant. 

But Intel's development team continues to push the NUC platform forward and today we are evaluating the most recent iteration. The Intel NUC5i5RYK is based on the latest 14nm Broadwell processor and offers improved CPU performance, a higher speed GPU and lower power consumption. All of this is packed into a smaller package than any previous NUC on the market and the result is both impressive and totally expected.

A Walk Around the NUC

To most poeple the latest Intel NUC will look very similar to the previous models based on Ivy Bridge and Haswell. You'd be right of course - the fundamental design is unchanged. But Intel continues to push forward in small ways, nipping and tucking away. But the NUC is still just a box. An incredibly small one with a lot of hardware crammed into it, but a box none the less.

IMG_1619.jpg

While I can appreciate the details including the black and silver colors and rounded edges, I think that Intel needs to find a way to add some more excitement into the NUC product line going forward. Admittedly, it is hard to inovate in that directions with a focus on size and compression.

Continue reading our review of the Intel NUC NUC5i5RYK SFF!!

Author:
Subject: Processors, Mobile
Manufacturer: Qualcomm

New Features and Specifications

Introduction

It is increasingly obvious that in the high end smartphone and tablet market, much like we saw occur over the last several years in the PC space, consumers are becoming more concerned with features and experiences than just raw specifications. There is still plenty to drool over when looking at and talking about 4K screens in the palm of your hand, octa-core processors and mobile SoC GPUs measuring performance in hundreds of GFLOPS, but at the end of the day the vast majority of consumers want something that does something to “wow” them.

As a result, device manufacturers and SoC vendors are shifting priorities for performance, features and how those are presented both the public and to the media. Take this week’s Qualcomm event in San Diego where a team of VPs, PR personnel and engineers walked me through the new Snapdragon 810 processor. Rather than showing slide after slide of comparative performance numbers to the competition, I was shown room after room of demos. Wi-Fi, LTE, 4K capture and playback, gaming capability, thermals, antennae modifications, etc. The goal is showcase the experience of the entire platform – something that Qualcomm has been providing for longer than just about anyone in this business, while educating consumers on the need for balance too.

hw1.jpg

As a 15-year veteran of the hardware space my first reaction here couldn’t have been scripted any more precisely: a company that doesn’t show performance numbers has something to hide. But I was given time with a reference platform featuring the Snapdragon 810 processor in a tablet form-factor and the results show impressive increases over the 801 and 805 processors from the previous family. Rumors of the chips heat issues seem overblown, but that part will be hard to prove for sure until we get retail hardware in our hands to confirm.

Today’s story will outline the primary feature changes of the Snapdragon 810 SoC, though there was so much detail presented at the event with such a short window of time for writing that I definitely won’t be able to get to it all. I will follow up the gory specification details with performance results compared to a wide array of other tablets and smartphones to provide some context to where 810 stands in the market.

hw4.jpg

Let’s dive in! Continue reading our preview of the new Qualcomm Snapdragon 810 SoC!!

Author:
Manufacturer: Gigabyte

SFF PCs get an upgrade

Ultra compact computers, otherwise known as small form factor PCs, are a rapidly increasing market as consumers realize that, for nearly all purposes other than gaming and video editing, Ultrabook-class hardware is "fast enough". I know that some of our readers will debate that fact, and we welcome the discussion, but as CPU architectures continue to improve in both performance and efficiency, you will be able to combine higher performance into smaller spaces. The Gigabyte BRIX platform is the exact result that you expect to see with that combination.

Previously, we have seen several other Gigabyte BRIX devices including our first desktop interaction with Iris Pro graphics, the BRIX Pro. Unfortunately though, that unit was plagued by noise issues - the small fan spun pretty fast to cool a 65 watt processor. For a small computer that would likely sit on top of your desk, that's a significant drawback. 

IMG_1511.JPG

Intel Ivy Bridge NUC, Gigabyte BRIX S Broadwell, Gigabyte BRIX Pro Haswell

This time around, Gigabyte is using the new Broadwell-U architecture in the Core i7-5500U and its significantly lower, 15 watt TDP. That does come with some specification concessions though, including a dual-core CPU instead of a quad-core CPU and a peak Turbo clock rate that is 900 MHz lower. Comparing the Broadwell BRIX S to the more relevant previous generation based on Haswell, we get essentially the same clock speed, a similar TDP, but also an improved core architecture.

Today we are going to look at the new Gigabyte BRIX S featuring the Core i7-5500U and an NFC chip for some interesting interactions. The "S" designates that this model could support a full size 2.5-in hard drive in addition to the mSATA port. 

Let's dive in and take a look!

Author:
Subject: Processors
Manufacturer: ARM

ARM Releases Top Cortex Design to Partners

ARM has an interesting history of releasing products.  The company was once in the shadowy background of the CPU world, but with the explosion of mobile devices and its relevance in that market, ARM has had to adjust how it approaches the public with their technologies.  For years ARM has announced products and technology, only to see it ship one to two years down the line.  It seems that with the increased competition in the marketplace from Apple, Intel, NVIDIA, and Qualcomm ARM is now pushing to license out its new IP in a way that will enable their partners to achieve a faster time to market.

arm_01.jpg

The big news this time is the introduction of the Cortex A72.  This is a brand new design that will be based on the ARMv8-A instruction set.  This is a 64 bit capable processor that is also backwards compatible with 32 bit applications programmed for ARMv7 based processors.  ARM does not go into great detail about the product other than it is significantly faster than the previous Cortex-A15 and Cortex-A57.

The previous Cortex-A15 processors were announced several years back and made their first introduction in late 2013/early 2014.  These were still 32 bit processors and while they had good performance for the time, they did not stack up well against the latest A8 SOCs from Apple.  The A53 and A57 designs were also announced around two years ago.  These are the first 64 bit designs from ARM and were meant to compete with the latest custom designs from Apple and Qualcomm’s upcoming 64 bit part.  We are only now just seeing these parts make it into production, and even Qualcomm has licensed the A53 and A57 designs to insure a faster time to market for this latest batch of next-generation mobile devices.

arm_02.jpg

We can look back over the past five years and see that ARM is moving forward in announcing their parts and then having their partners ship them within a much shorter timespan than we were used to seeing.  ARM is hoping to accelerate the introduction of its new parts within the next year.

Click here to continue reading about ARM's latest releases!

Author:
Subject: Processors
Manufacturer: NVIDIA

NVIDIA's Tegra X1

NVIDIA seems to like begin on a one year cycle with their latest Tegra products.  Many years ago we were introduced to the Tegra 2, and the year after that the Tegra 3, and the year after that the Tegra 4.  Well, NVIDIA did spice up their naming scheme to get away from the numbers (not to mention the potential stigma of how many of those products actually made an impact in the industry).  Last year's entry was the Tegra K1 based on the Kepler graphics technology.  These products were interesting due to the use of the very latest, cutting edge graphics technology in a mobile/low power format.  The Tegra K1 64 bit variant used two “Denver” cores that were actually designed by NVIDIA.

IMG_0929.JPG

While technically interesting, the Tegra K1 series have made about the same impact as the previous versions.  The Nexus 9 was the biggest win for NVIDIA with these parts, and we have heard of a smattering of automotive companies using Tegra K1 in those applications.  NVIDIA uses the Tegra K1 in their latest Shield tablet, but they do not typically release data regarding the number of products sold.  The Tegra K1 looks to be the most successful product since the original Tegra 2, but the question of how well they actually sold looms over the entire brand.

So why the history lesson?  Well, we have to see where NVIDIA has been to get a good idea of where they are heading next.  Today, NVIDIA is introducing the latest Tegra product, and it is going in a slightly different direction than what many had expected.

IMG_0936.JPG

The reference board with 4 GB of LPDDR4.

Click here to read the rest of the NVIDIA Tegra X1 release!

Author:
Subject: Processors, Mobile
Manufacturer: Intel

Core M 5Y70 Specifications

Back in August of this year, Intel invited me out to Portland, Oregon to talk about the future of processors and process technology. Broadwell is the first microarchitecture to ship on Intel's newest 14nm process technology and the performance and power implications of it are as impressive as they are complex. We finally have the first retail product based on Broadwell-Y in our hands and I am eager to see how this combination of technology is going to be implemented.

If you have not read through my article that dives into the intricacies of the 14nm process and the architectural changes coming with Broadwell, then I would highly recommend that you do so before diving any further into this review. Our Intel Core M Processor: Broadwell Architecture and 14nm Process Reveal story clearly explains the "how" and "why" for many of the decisions that determined the direction the Core M 5Y70 heads in.

As I stated at the time:

"The information provided by Intel about Broadwell-Y today shows me the company is clearly innovating and iterating on its plans set in place years ago with the focus on power efficiency. Broadwell and the 14nm process technology will likely be another substantial leap between Intel and AMD in the x86 tablet space and should make an impact on other tablet markets (like Android) as long as pricing can remain competitive. That 14nm process gives Intel an advantage that no one else in the industry can claim and unless Intel begins fabricating processors for the competition (not completely out of the question), that will remain a house advantage."

With a background on Intel's goals with Broadwell-Y, let's look at the first true implementation.

Continue reading our review of the Intel Core M 5Y70 Broadwell-Y Processor!!

Author:
Manufacturer: Intel

Core M 5Y70 Early Testing

During a press session today with Intel, I was able to get some early performance results on Broadwell-Y in the form of the upcoming Core M 5Y70 processor.

llama1.jpg

Testing was done on a reference design platform code named Llama Mountain and at the heart of the system is the Broadwell-Y designed dual-core CPU, the Core M 5Y70, which is due out later this year. Power consumption of this system is low enough that Intel has built it with a fanless design. As we posted last week, this processor has a base frequency of just 1.10 GHz but it can boost as high as 2.6 GHz for extra performance when it's needed.

Before we dive into the actual result, you should keep in mind a couple of things. First, we didn't have to analyze the systems to check driver revisions, etc., so we are going on Intel's word that these are setup as you would expect to see them in the real world. Next, because of the disjointed nature of test were were able to run, the comparisons in our graphs aren't as great as I would like. Still, the results for the Core M 5Y70 are here should you want to compare them to any other scores you like.

First, let's take a look at old faithful: CineBench 11.5.

cb11.png

UPDATE: A previous version of this graph showed the TDP for the Intel Core M 5Y70 as 15 watts, not the 4.5 watt listed here now. The reasons are complicated. Even though the Intel Ark website lists the TDP of the Core M 5Y70, Intel has publicly stated the processor will make very short "spikes" at 15 watts when in its highest Turbo Boost modes. It comes to a discussion of semantics really. The cooling capability of the tablet is only targeted to 4.5-6.0 watts and those very short 15 watt spikes can be dissipated without the need for extra heatsink surface...because they are so short. SDP anyone? END UPDATE

With a score of 2.77, the Core M 5Y70 processor puts up an impressive fight against CPUs with much higher TDP settings. For example, Intel's own Pentium G3258 gets a score of 2.71 in CB11, and did so with a considerably higher thermal envelope. The Core i3-4330 scores 38% higher than the Core M 5Y70 but it requires a TDP 3.6-times larger to do so. Both of AMD's APUs in the 45 watt envelope fail to keep up with Core M.

Continue reading our preview of Intel Core M 5Y70 Performance!!

Author:
Subject: Processors
Manufacturer: Intel

Server and Workstation Upgrades

Today, on the eve of the Intel Developer Forum, the company is taking the wraps off its new server and workstation class high performance processors, Xeon E5-2600 v3. Known previously by the code name Haswell-EP, the release marks the entry of the latest microarchitecture from Intel to multi-socket infrastructure. Though we don't have hardware today to offer you in-house benchmarks quite yet, the details Intel shared with me last month in Oregon are simply stunning.

slides01.jpg

Starting with the E5-2600 v3 processor overview, there are more changes in this product transition than we saw in the move from Sandy Bridge-EP to Ivy Bridge-EP. First and foremost, the v3 Xeons will be available in core counts as high as 18, with HyperThreading allowing for 36 accessible threads in a single CPU socket. A new socket, LGA2011-v3 or R3, allows the Xeon platforms to run a quad-channel DDR4 memory system, very similar to the upgrade we saw with the Haswell-E Core i7-5960X processor we reviewed just last week.

The move to a Haswell-based microarchitecture also means that the Xeon line of processors is getting AVX 2.0, known also as Haswell New Instructions, allowing for 2x the FLOPS per clock per core. It also introduces some interesting changes to Turbo Mode and power delivery we'll discuss in a bit.

slides02.jpg

Maybe the most interesting architectural change to the Haswell-EP design is per core P-states, allowing each of the up to 18 cores running on a single Xeon processor to run at independent voltages and clocks. This is something that the consumer variants of Haswell do not currently support - every cores is tied to the same P-state. It turns out that when you have up to 18 cores on a single die, this ability is crucial to supporting maximum performance on a wide array of compute workloads and to maintain power efficiency. This is also the first processor to allow independent uncore frequency scaling, giving Intel the ability to improve performance with available headroom even if the CPU cores aren't the bottleneck.

Continue reading our overview of the new Intel Xeon E5-2600 v3 Haswell-EP Processors!!

Author:
Subject: Processors
Manufacturer: AMD

Pushing the 8 Cores

It seems like yesterday when I last talked about an AMD refresh!  Oh wait, it almost was.  Some weeks ago I was able to cover the latest AMD APU offerings that helped to flesh out the Kaveri lineup.  We thought AMD was done for a while.  Color us wrong.  AMD pulled out all the stops and set up an AM3+ refresh!  There is a little excitement here, I guess.  I am trying to contain the tongue-in-cheek lines that I am oh-so-tempted to write.

pic_01.jpg

AMD is refreshing their FX lineup in the waning days of Summer!

Let me explain the situation from my point of view.  The FX lineup for AM3+ has not done a whole lot since the initial release of the Piledriver based FX-8350 and family (Vishera).  Piledriver was a pretty significant update from Bulldozer as it slightly improved IPC and greatly improved power consumption (all the while helping to improve clockspeed by a small degree).  There were two updates before this one, but they did not receive nearly as much coverage.  These updates were the FX-6350 and the FX-9000 series.  The FX-6350 is quite popular with the budget enthusiast crowd who still had not moved over to the Intel side of the equation.  The FX-9000 series were OEM only initially and reaching up to $1000 at the high end.  During that time since the original Vishera chips were released, we have seen the Intel Ivy Bridge and Haswell architectures (with a small refresh with Haswell with the 2nd gen products and the latest Socket 2011 units).

Click here to read the rest of the review on AMD's latest FX refresh!

Author:
Subject: Processors
Manufacturer: Intel

Revamped Enthusiast Platform

Join us at 12:30pm PT / 3:30pm ET as Intel's Matt Dunford joins us for a live stream event to discuss the release of Haswell-E and the X99 platform!! Find us at http://www.pcper.com/live!!

Sometimes writing these reviews can be pretty anti-climactic. With all of the official and leaked information released about Haswell-E over the last six to nine months, there isn't much more to divulge that can truly be called revolutionary. Yes, we are looking at the new king of the enthusiast market with an 8-core processor that not only brings a 33% increase in core count over the previous generation Ivy Bridge-E and Sandy Bridge-E platforms, but also includes the adoption of the DDR4 memory specification, which allows for high density and high speed memory subsystems.

And along with the new processor on a modified socket (though still LGA2011) comes a new chipset with some interesting new features. If you were left wanting for USB 3.0 or Thunderbolt on X79, then you are going to love what you see with X99. Did you think you needed some more SATA ports to really liven up your pool of hard drives? Retail boards are going to have you covered.

Again, just like last time, you will find a set of three processors that are coming into the market at the same time. These offerings range from the $999 price point and go down to the much more reasonable cost of $389. But this time there are more interesting decisions to be made based on specification differences in the family. Do the changes that Intel made in the sub-$1000 SKUs make it a better or worse buy for users looking to finally upgrade? 

Haswell-E: A New Enthusiast Lineup from Intel

Today's launch of the Intel Core i7-5960X processor continues on the company's path of enthusiast branded parts that are built off of a subset of the workstation and server market. It is no secret that some Xeon branded processors will work in X79 motherboards and the same is true of the upcoming Haswell-EP series (with its X99 platform) launching today. As an enthusiast though, I think we can agree that it doesn't really matter how a processor like this comes about, as long as it continues to occur well into the future.

hswex99-5.jpg

The Core i7-5960X processor is an 8-core, 16-thread design built on what is essentially the same architecture we saw released with the mainstream Haswell parts released in June of 2013. There are some important differences of course, including the lack of integrated graphics and the move from DDR3 to DDR4 for system memory. The underlying microarchitecture remains unchanged, though. Previously known as the Haswell-E platform, the Core i7-5960X continues Intel's trend of releasing enthusiast/workstation grade platforms that are based on an existing mainstream architecture.

Continue reading our review of the new Intel Core i7-5960X Haswell-E processor!!

Manufacturer: PC Perspective

Introduction

Introduction

02-cpu-in-vise-block-positioning-profile.jpg

Since the introduction of the Haswell line of CPUs, the Internet has been aflame with how hot the CPUs run. Speculation ran rampant on the cause with theories abounding about the lesser surface area and inferior thermal interface material (TIM) in between the CPU die surface and the underside of the CPU heat spreader. It was later confirmed that Intel had changed the TIM interfacing the CPU die surface to the heat spreader with Haswell, leading to the hotter than expected CPU temperatures. This increase in temperature led to inconsistent core-to-core temperatures as well as vastly inferior overclockability of the Haswell K-series chips over previous generations.

A few of the more adventurous enthusiasts took it upon themselves to use inventive ways to address the heat concerns surrounding the Haswell by delidding the processor. The delidding procedure involves physically removing the heat spreader from the CPU, exposing the CPU die. Some individuals choose to clean the existing TIM from the core die and heat spreader underside, applying superior TIM such as metal or diamond-infused paste or even the Coollaboratory Liquid Ultra metal material and fixing the heat spreader back in place. Others choose a more radical solution, removing the heat spreader from the equation entirely for direct cooling of the naked CPU die. This type of cooling method requires use of a die support plate, such as the MSI Die Guard included with the MSI Z97 XPower motherboard.

Whichever outcome you choose, you must first remove the heat spreader from the CPU's PCB. The heat spreader itself is fixed in place with black RTV-type material ensuring a secure and air-tight seal, protecting the fragile die from outside contaminants and influences. Removal can be done in multiple ways with two of the most popular being the razor blade method and the vise method. With both methods, you are attempting to separate the CPU PCB from the heat spreader without damaging the CPU die or components on the top or bottom sides of the CPU PCB.

Continue reading editorial on delidding your Haswell CPU!!

Author:
Subject: Processors
Manufacturer: Intel

Coming in 2014: Intel Core M

The era of Broadwell begins in late 2014 and based on what Intel has disclosed to us today, the processor architecture appears to be impressive in nearly every aspect. Coming off the success of the Haswell design in 2013 built on 22nm, the Broadwell-Y architecture will not only be the first to market with a new microarchitecture, but will be the flagship product on Intel’s new 14nm tri-gate process technology.

The Intel Core M processor, as Broadwell-Y has been dubbed, includes impressive technological improvements over previous low power Intel processors that result in lower power, thinner form factors, and longer battery life designs. Broadwell-Y will stretch into even lower TDPs enabling 9mm or small fanless designs that maintain current battery lifespans. A new 2nd generation FIVR with modified power delivery design allows for even thinner packaging and a wider range of dynamic frequencies than before. And of course, along with the shift comes an updated converged core design and improved graphics performance.

All of these changes are in service to what Intel claims is a re-invention of the notebook. Compared to 2010 when the company introduced the original Intel Core processor, thus redirecting Intel’s direction almost completely, Intel Core M and the Broadwell-Y changes will allow for some dramatic platform changes.

broadwell-12.jpg

Notebook thickness will go from 26mm (~1.02 inches) down to a small as 7mm (~0.27 inches) as Intel has proven with its Llama Mountain reference platform. Reductions in total thermal dissipation of 4x while improving core performance by 2x and graphics performance by 7x are something no other company has been able to do over the same time span. And in the end, one of the most important features for the consumer, is getting double the useful battery life with a smaller (and lighter) battery required for it.

But these kinds of advancements just don’t happen by chance – ask any other semiconductor company that is either trying to keep ahead of or catch up to Intel. It takes countless engineers and endless hours to build a platform like this. Today Intel is sharing some key details on how it was able to make this jump including the move to a 14nm FinFET / tri-gate transistor technology and impressive packaging and core design changes to the Broadwell architecture.

Intel 14nm Technology Advancement

Intel consistently creates and builds the most impressive manufacturing and production processes in the world and it has helped it maintain a market leadership over rivals in the CPU space. It is also one of the key tenants that Intel hopes will help them deliver on the world of mobile including tablets and smartphones. At the 22nm node Intel was the first offer 3D transistors, what they called tri-gate and others refer to as FinFET. By focusing on power consumption rather than top level performance Intel was able to build the Haswell design (as well as Silvermont for the Atom line) with impressive performance and power scaling, allowing thinner and less power hungry designs than with previous generations. Some enthusiasts might think that Intel has done this at the expense of high performance components, and there is some truth to that. But Intel believes that by committing to this space it builds the best future for the company.

Continue reading our reveal of Intel's Broadwell Architecture and 14nm Process Technology!!

Author:
Subject: Processors
Manufacturer: AMD

Filling the Product Gaps

In the first several years of my PCPer employment, I typically handled most of the AMD CPU refreshes.  These were rather standard affairs that involved small jumps in clockspeed and performance.  These happened every 6 to 8 months, with the bigger architectural shifts happening some years apart.  We are finally seeing a new refresh of the AMD APU parts after the initial release of Kaveri to the world at the beginning of this year.  This update is different.  Unlike previous years, there are no faster parts than the already available A10-7850K.

a10_7800_01.png

This refresh deals with fleshing out the rest of the Kaveri lineup with products that address different TDPs, markets, and prices.  The A10-7850K is still the king when it comes to performance on the FM2+ socket (as long as users do not pay attention to the faster CPU performance of the A10-6800K).  The initial launch in January also featured another part that never became available until now; the A8-7600 was supposed to be available some months ago, but is only making it to market now.  The 7600 part was unique in that it had a configurable TDP that went from 65 watts down to 45 watts.  The 7850K on the other hand was configurable from 95 watts down to 65 watts.

a10_7800_02.png

So what are we seeing today?  AMD is releasing three parts to address the lower power markets that AMD hopes to expand their reach into.  The A8-7600 was again detailed back in January, but never released until recently.  The other two parts are brand new.  The A10-7800 is a 65 watt TDP part with a cTDP that goes down to 45 watts.  The other new chip is the A6-7600K which is unlocked, has a configurable TDP, and looks to compete directly with Intel’s recently released 20 year Anniversary Pentium G3258.

Click here to read the entire article!

Manufacturer: Intel

When Magma Freezes Over...

Intel confirms that they have approached AMD about access to their Mantle API. The discussion, despite being clearly labeled as "an experiment" by an Intel spokesperson, was initiated by them -- not AMD. According to AMD's Gaming Scientist, Richard Huddy, via PCWorld, AMD's response was, "Give us a month or two" and "we'll go into the 1.0 phase sometime this year" which only has about five months left in it. When the API reaches 1.0, anyone who wants to participate (including hardware vendors) will be granted access.

AMD_Mantle_Logo.png

AMD inside Intel Inside???

I do wonder why Intel would care, though. Intel has the fastest per-thread processors, and their GPUs are not known to be workhorses that are held back by API call bottlenecks, either. Of course, that is not to say that I cannot see any reason, however...

Read on to see why, I think, Intel might be interested and what this means for the industry.

Author:
Subject: Processors
Manufacturer: Intel

A refresh for Haswell

Intel is not very good at keeping secrets recently. Rumors of a refreshed Haswell line of processors have been circulating for most of 2014.  In March, it not only confirmed that release but promised an even more exciting part called Devil's Canyon. The DC parts are still quad-core Haswell processors built on Intel's 22nm process technology, but change a few specific things. 

Intel spent some time on the Devil's Canyon Haswell processors to improve the packaging and thermals for overclockers and enthusiasts. The thermal interface material (TIM) that lies in between the die and the heat spreader has been updated to a next-generation polymer TIM (NGPTIM). The change should improve cooling performance of all currently shipping cooling solutions (air or liquid), but it is still a question just HOW MUCH this change will actually matter. 

slides13.jpg

You can also tell from the photo comparison above that Intel has added capacitors to the back of the processor to "smooth" power delivery. This, in combination with the NGPTIM, should enable a bit more headroom for clock speeds with the Core i7-4790K.

slides08.jpg

In fact, there are two Devil's Canyon processors being launched this month. The Core i7-4790K will sell for $339, the same price as the Core i7-4770K, while the Core i5-4690K will sell for $242. The lower end option is a 3.5 GHz base clock, 3.9 GHz Turbo clock quad-core CPU without HyperThreading. While a nice step over the Core i5-4670K, it's only 100 MHz faster. Clearly the Core i7-4790K is the part everyone is going to be scrambling to buy.

Another interesting change is that both the Core i7-4790K and the Core i5-4690K enable support for both Intel's VT-d virtualization IO technology and Intel's TSX-NI transactional memory instructions. This makes them the first enthusiast-grade unlocked processors from Intel to support them!

As Intel states it, the Core i7-4790K and the Core i5-4690K have been "designed to be used in conjunction with the Z97 chipset." That being said, at least one motherboard manufacturer, ASUS, has released limited firmware updates to support the Devil's Canyon parts on Z87 products. Not all motherboards are going to be capable, and not all vendors are going to the spend the time to integrate support, so keep an eye on the support page for your specific motherboard.

IMG_0223.JPG

The CPU itself looks no different on the top, save for the updated model numbering.

IMG_0228.JPG

Core i7-4790K on the left, Core i7-4770K on the right

On the back you can see the added capacitors that help with stable overclocking.

The clock speed advantage that the Core i7-4790K provides over the Core i7-4770K should not be overlooked, even before overclocking is taken into consideration. A 500 MHz base clock boost is 14% higher in this case and in those specific CPU-limited tasks, you should see very high scaling.

Continue reading our review of the Intel Core i7-4790K Devil's Canyon CPU!!

Author:
Subject: Processors, Mobile
Manufacturer: AMD
Tagged: amd, FX, fx-7600p, Kaveri

Kaveri Goes Mobile

The processor market is in an interesting place today. At the high end of the market Intel continues to stand pretty much unchallenged, ranging from the Ivy Bridge-E at $1000 to the $300 Haswell parts available for DIY users. The same could really be said for the mobile market - if you want a high performance part the default choice continues to rest with Intel. But AMD has some interesting options that Intel can't match when you start to enter the world of the mainstream notebook. The APU was slow to develop but it has placed AMD in a unique position, separated from the Intel processors with a more or less reversed compute focus. While Intel dominates in the performance on the x86 side of things, the GPU in AMD's latest APUs continue to lead in gaming and compute performance.

The biggest problem for AMD is that the computing software ecosystem still has not caught up with the performance that a GPU can provide. With the exception of games, the GPU in a notebook or desktop remains under utilized. Certain software vendors are making strides - see the changes in video transcoding and image manipulation - but there is still some ground AMD needs to accelerate down.

slides01.jpg

Today we are looking at the mobile version of Kaveri, AMD's latest entry into the world of APUs. This processor combines the latest AMD processor architecture with a GCN-based graphics design for a pretty advanced part. When the desktop version of this processor was released, we wrote quite a bit about the architecture and the technological advancements made into, including becoming the first processor that is fully HSA compliant. I won't be diving into the architecture details here since we covered them so completely back in January just after CES.

slides02.jpg

The mobile version of Kaveri is basically identical in architecture with some changes for better power efficiency. The flagship part will ship with 12 Compute Cores (4 Steamroller x86 cores and 8 GCN cores) and will support all the same features of GCN graphics designs including the new Mantle API.

slides03.jpg

Early in the spring we heard rumors that the AMD FX brand was going to make a comeback! Immediately enthusiasts were thinking up ways AMD could compete against the desktop Core i7 parts from Intel; could it be with 12 cores? DDR4 integration?? As it turns out...not so much.

Continue reading our preview of the AMD FX-7600P Mobile Kaveri APU!!

Author:
Subject: Processors
Manufacturer: AMD

Another Boring Presentation...?

In my old age I am turning into a bit of a skeptic.  It is hard to really blame a guy; we are surrounded by marketing and hype, both from inside companies and from their fans.  When I first started to listen in on AMD’s Core Innovation Update presentation, I was not expecting much.  I figured it would be a rehash of the past year, more talk about Mullins/Beema, and some nice words about some of the upcoming Kaveri mobile products.

I was wrong.

AMD decided to give us a pretty interesting look at what they are hoping to accomplish in the next three years.  It was not all that long ago that AMD was essentially considered road kill, and there was a lot of pessimism that Rory Read and Co. could turn AMD around.  Now after a couple solid years of growth, a laser-like focus on product development based on the IP strengths of the company, and a pretty significant cut of the workforce, we are seeing an AMD that is vastly different from the one that Dirk Meyers was in charge of (or Hector Ruiz for that matter).  Their view for the future takes a pretty significant turn from where AMD was even 8 years ago.  x86 certainly has a future for AMD, but the full-scale adoption of the ARM architecture looks to be what finally differentiates this company from Intel.

Look, I’m Amphibious!

AMD is not amphibious.  They are working on being ambidextrous.  Their goal is not only to develop and sell x86 based processors, but also be a prime moving force in the ARM market.  AMD has survived against a very large, well funded, and aggressive organization for the past 35 years.  They believe their experience here can help them break into, and thrive within, the ARM marketplace.  Their goals are not necessarily to be in every smartphone out there, but they are leveraging the ARM architecture to address high growth markets that have a lot of potential.

amd_01.png

There are really two dominant architectures in the world with ARM and x86.  They power the vast majority of computing devices around the world.  Sure, we still have some Power and MIPS implementations, but they are dwarfed by the combined presence of x86 and ARM in modern devices.  The flexibility of x86 allows it to scale from the extreme mobile up to the highest performing clusters.  ARM also has the ability to scale in performance from handhelds up to the server world, but so far their introduction into servers and HPC solutions has been minimal to non-existent.  This is an area that AMD hopes to change, but it will not happen overnight.  A lot of infrastructure is needed to get ARM into that particular area.  Ask Intel how long it took for x86 to gain a handhold in the lucrative server and workstation markets.

Click here to read the entire article on AMD's Core Technology Update!

Author:
Subject: Processors
Manufacturer: AMD

AMD Makes some Lemonade...

I guess we could say that AMD has been rather busy lately.  It seems that a significant amount of the content on PC Perspective this month revolved around the AMD AM1 platform.  Before that we had the Kaveri products and the R7 265.  AMD also reported some fairly solid growth over the past year with their graphics and APU lines.  Things are not as grim and dire as they once were for the company.  This is good news for consumers as they will continue to be offered competing solutions that will vie for that hard earned dollar.

amd_bm_02.jpg

AMD is continuing their releases for 2014 with the announcement of their latest low-power and mainstream mobile APUs.  These are codenamed “Beema” and “Mullins”, but they are based on the year old Kabini chip.  This may cause a few people to roll their eyes as AMD has had some fairly unimpressive refreshes in the past.  We saw the rather meager increases in clockspeed and power consumption with Brazos 2.0 a couple of years back, and it looked like this would be the case again for Beema and Mullins.

It isn’t.

I was again expecting said meager improvements in power consumption and clockspeeds that we had received all those years ago with Brazos 2.0.  Turns out I was wrong.  This is a fairly major refresh which does a few things that I did not think were entirely possible, and I’m a rather optimistic person.   So why is this release surprising?  Let us take a good look under the hood.

Click here to read the entire Beema/Mullins introduction!