Review Index:
Feedback

Corsair TX750W Power Supply Review

Manufacturer: Corsair Components
Tagged:

AC Ripple and Power Factor

AC Ripple and Noise on the DC Outputs

The amount of AC ripple and noise present on the DC outputs was checked using an oscilloscope.  This AC component may be present in the KHz range where most switching power supplies operate or it may be more prevalent at the 60 Hz line frequency.  I adjusted the O-scope time base to look for AC ripple at both low and high frequencies. 

The new ATX12V V2.2 specification for DC output noise/ripple is defined in the ATX12V Power Supply Design Guide.


Ideally we would like to see no AC ripple (repetitive) or noise (random) on the DC outputs – the cleaner the better!  But in reality there will always be some present.  I measured the amplitude of the AC signal (in millivolts, peak-to-peak) to see how well the power supply complied with the ATX standard.  The following table lists the ripple/noise results during all of the load tests for the four main output voltages of interest.


The TX750W power supply exhibited good AC ripple suppression across the full load range.  The +5V rail was excellent, staying quiet up to full load.  All values stayed well below the recommended limits, but the +12V rail was higher than we would like to see at higher loads.  This appears to be a weakness with CWT built units (among others).  Overall, the DC output quality is OK but not as good as we have seen on previous Seasonic built Corsair power supplies.

Power Factor (PF)

Power factor (PF) is one of those mysterious properties of AC that even most electrical engineers have a hard time explaining.  I’m only presenting a brief overview of the subject – for a more detailed discussion about PF, please see my expanded comments in this review.


AC Volts x AC Amps = VA (Volt Amp)

Purely Resistive AC Load: VA = Watts (same as DC circuits)

Inductive/Reactive AC Load: VA x PF = Watts

AC Volts x AC Amps x PF = Watts

Power factor is defined as the ratio of true power (measured in watts) to apparent power (measured in Volt Amps).  It measures how effectively AC power is being used by a device.  The difference between true power and apparent power is expressed as the power factor and results from the way true power and apparent power are measured.  Ideally we would like to have true power and apparent power equal to one another, which would result in a PF of 1.00 or 100% effective power utilization. 

I measured the AC Power Factor with an Extech power analyzer at both 115 VAC and 240 VAC input voltages.  The Corsair TX750W power supply uses Active PFC circuits so as expected; the majority of readings were close to 1.0. 


Note: A power supply with active PFC is more environmentally friendly (doesn’t pollute the AC transmission grid with harmonics) and will draw less current, but it will not save you money on your monthly electric bill unless you are a commercial user whose bill is based on PF and usage. 

No comments posted yet.

Post new comment

The content of this field is kept private and will not be shown publicly.
  • Lines and paragraphs break automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <blockquote><p><br>
  • Web page addresses and e-mail addresses turn into links automatically.

More information about formatting options

By submitting this form, you accept the Mollom privacy policy.