*Updated* Samsung 960 PRO and 960 EVO Announced - Details and Specifications Inside

Subject: Storage | September 21, 2016 - 12:00 AM |
Tagged: ssd, Samsung, pcie, NVMe, M.2, 960 PRO, 960 EVO

I'm currently running around at the various briefings and events here at Samsung's Global SSD Summit, but we did get some details on the 960 PRO and EVO that I've set to go live at the NDA time of 1 PM Seoul time.

960 Set_B.JPG

Here is a distilled version of the specs, capacities, and prices of the 960 PRO and EVO:

960 PRO

  • 512GB, 1TB, 2TB capacities
  • Sequential: 3.5 GB/s reads / 2.1 GB/s writes
  • 4K random (IOPS): 440,000 read / 360,000 write
  • Dynamic Thermal Guard (new version of their overtemperature protection - details below)
  • 5 year warranty, endurace peaks at 1.2PBW for the 2TB model
  • 512GB model = $329.99 ($0.64/GB)

960 EVO

  • 250GB, 500GB, 1TB capacities
  • Sequential: 3.2 GB/s reads / 1.9 GB/s writes (write speed is for TurboWrite SLC cache)
  • 4K random (IOPS): 380,000 read / 360,000 write
  • Dynamic Thermal Guard
  • 3 year warranty, endurance up to 400TBW for the 1TB model
  • 250GB = $129.99 ($0.52/GB)

I would certainly like to see Samsung push the 960 EVO capacities upwards of 4TB, and with competing M.2 NVMe products shipping at a lower cost, those prices use some tweaking as well.

More information and pics to follow later today (tonight for you USA folks)!

**UPDATE** - since everyone is in bed and hasn't read any of this yet, I'm just going to add the information from the presentation here.

First, some of you may be wondering about the inverted capacity difference between the PRO and EVO. Historically, Samsung has shipped their EVO line in higher capacities than the PRO line. The 850 EVO currently ships in capacities up to 4TB, while the 850 PRO remains limited to 2TB. If you look closely at the photos above, you'll note that there are four flash packages on the PRO, while there are only two on the EVO. The cause for this difference is that the DRAM package (visible on the EVO) is integrated within the controller package on the PRO model. This is similar to what Samsung has done with their PM971-NVMe SSD, which has not only the controller and DRAM, but the flash itself all stacked within a *single* package. Samsung calls this package-on-package (PoP):

DSC03649.jpg

DSC03652.jpg

During the Q&A, Samsung's Unsoo Kim indicated that future 960 EVO's may also shift to the PoP design in order to shift to 4 packages, and therefore double (or quadruple) the capacity on that line in the future.

Samsung also tackled thermal throttling head-on with what they call Dynamic Thermal Guard. This is a combination of a few things. First is the reduced power consumption - the new controller draws ~10% less power despite moving to a 5-core design (up from a 3-core on the 950 PRO). Second, and perhaps more interesting, is a new heat spreading label:

DSC03621.jpg

This new label contains a copper layer that helps spread heat across more of the surface area of the M.2 part. Samsung gets bonus points for outside the box thinking there. The combination of the reduced power draw and the heat spreader help to make thermal throttling even more impossible under typical use:

DSC03625.jpg

While the above chart was for reads (writes produce more heat), that's still a very good improvement, and being able to move potentially the full drive capacity before throttling is pretty good, especially considering the new models are moving data at a much faster speed. About those faster speeds, here are some increased details on the per-capacity specs:

960 PRO

DSC03579.jpg

DSC03580.jpg

DSC03582.jpg

DSC03583.jpg

960 EVO

DSC03588.jpg

DSC03589.jpg

DSC03592.jpg

DSC03596.jpg

Take the 960 EVO write specs with a grain of salt - those are assuming writes are going into the SLC cache area but never fear because TurboWrite is getting a boost as well:

DSC03609.jpg

This new 'Intelligent TurboWrite' increases the SLC cache area significantly over that of the 850 EVO we are all used to, with up to a 42GB area on the 1TB model! This should make it easier to swallow those boastful write performance claims, as there's a really good chance that all writes any typical user applies to the new EVO will go straight into that new larger cache. 

Apologies for the odd cutoffs on these pictures. They were corrected for parallax prior to posting. I also couldn't do anything about the presenter being in the way of the data :). I've requested slides from Samsung and will replace these here if/when they are provided.

Last but not least was a newly announced '2.0' version of the Samsung proprietary NVMe driver, which should help enable these increased speeds, as the Windows InBox driver is certainly not optimized to handle them. With the driver comes a new ground-up redesign of Samsung's Magician software, which added support for file-specific secure erasure and a special 'Magic Vault' secure encrypted area of the SSD that can be invisible to the host OS when locked.

This appears to be the bulk of what is to be announced at the Summit, so for now, I leave you with the endurance ratings and (MSRP) pricing for all capacities / models:

DSC03697.jpg

DSC03702.jpg

Full press blast after the break.

Samsung Kicks Off Global SSD Summit With 960 EVO and 960 PRO

Subject: Storage | September 20, 2016 - 06:01 AM |
Tagged: Samsung, 960 PRO, 960 EVO, NVMe, pcie, ssd, Summit, Global

Your humble Storage Editor is once again in Seoul, Korea. With these trips comes unique skylines:

DSC03160.jpg

...the Seoul Tower:

DSC03182.jpg

...and of course, SSD announcements! Samsung has a habit of slipping product pics into the yearly theme. This year they were a bit more blunt about it:

DSC03187-1.jpg

Yup, looks like tomorrow we will see Samsung officially announce their successor to the 950 PRO. We'll be hearing all about the 960 PRO and the new 960 EVO tomorrow, exactly three months after we broke the early news of these new models.

There will, of course, be more details tomorrow once we attend the relevant product briefings. This will be late at night for those of you back in the states. No further details for now. I'm off to get some dinner and recover from that 14-hour flight!

OCZ's VX500, next generation MLC for those who want price and performance in the same drive

Subject: Storage | September 14, 2016 - 05:53 PM |
Tagged: VX500, ocz, toshiba, TC35, mlc, sata 6Gbs

We've seen a lot of high end SSDs lately so it is nice to be able to link to the new VX500 series from OCZ, or Toshiba to be more technically correct.  Running with MSRPs of ~$150 for the 512GB model and ~$340 for the 1TB model these drives will fit more comfortably into many budgets.  The 1TB model does come with a bit of a price increase thanks to the use of larger MLC NAND chips and the presence of a RAM cache, the 512GB model forgoes the cache altogether.  Hardware Canucks put the 512GB and 1TB models to the test and their speeds hit the top of the SATA charts; if you can't afford the newest SSD tech this is a drive worthy of your consideration.  They did not have the time to fully test the durability but the five year hassle free warranty and rated total disk writes show that the NAND is unlikely to die any time soon.

top.jpg

"OCZ is diving back into the mainstream SSD market in a big way. Their new VX500 series combines an affordable price with excellent performance and some incredible NAND durability."

Here are some more Storage reviews from around the web:

Storage

Crucial's new MX300 SSD; new NAND means new sizes

Subject: Storage | September 6, 2016 - 02:29 PM |
Tagged: crucial, MX300, 1050GB, sata ssd, M.2, 88SS1074, tlc

The MX300 series utilizes Micron 384G-bit, 32 tier floating gate, 3D TLC NAND which means that the capacities are a little different than we are used to.  1050GB is an odd number, the 978GB available after formatting even more so, but in the end the actual number matters less than the performance.  The SSD Review tested this drive which uses a four channel Micron 88SS1074 controller and sports eight NAND packages with Micron LPDDR3 1333MHz DRAM for a cache.  They tested a single drive as well as setting up two in RAID 0, the single drive could hit 535MB/s read and 516MB/s write and RAID 0 did indeed come close to doubling that.  Drop by to see their full results.

Crucial-MX300-1050GB-RAID-0-PCB.jpg

"Due to the new 384G-bit TLC 3D NAND, the MX300 line up is now offered in 275GB, 525GB, 750GB, 1050GB, and 2TB options. From this announcement, the 2TB option intrigued us the most, however, they are still unavailable, so we opted to get two 1050GB models for today's review."

Here are some more Storage reviews from around the web:

Storage

Samsung's 256GB Samsung EVO Plus MicroSD card, for your 4K recording pleasure

Subject: Storage | August 29, 2016 - 04:37 PM |
Tagged: microSD, Samsung, evo plus, U3, UHS-I

A while back Al broke down the specifications of SD cards and what each class meant and the proper usage for them.  The top class is U3 and it offers transfer speeds high enough to support recording 4K video on your devices and that happens to be the rating on the new 256GB Samsung EVO Plus MicroSD.  Legion Hardware just tested this MicroSD card and it now holds the title of best performing SD card they have tested.  The performance does come at a premium, the MSRP of the card is $250 and even with a 10 year warranty this is still an expensive purchase.  If you need the ability to record 4K video immediately this is the fast solution available but if you are still in the planning stages, remember that there is a new standard, UFS, which is due to hit the market soon and impact pricing of older products.

Image_03S.jpg

"Running out of storage on your smartphone, tablet or 4K video camera? Well the good news is SD cards have never been more affordable and crucially offered such huge storage capacities. In fact, Samsung recently announced the availability of a 256GB version of their popular EVO Plus MicroSD card series"

Here are some more Storage reviews from around the web:

Storage

Intel Revises All SSD Product Lines - 3D NAND Everywhere!

Subject: Storage | August 25, 2016 - 06:26 PM |
Tagged: ssd, Pro 6000p, Intel, imft, E 6000p, E 5420s, DC S3520, DC P3520, 600p, 3d nand

Intel announced the production of 3D NAND a little over a year ago, and we've now seen production ramp up to the point where they are infusing it into nearly every nook and cranny of their SSD product lines.

ssd-3d-nand-composite-form-factor-16x9.png.rendition.intel_.web_.720.405.png

The most relevant part for our readers will be a long overdue M.2 2280 SSD. These will kick off with the 600p:

ch-1.jpg

An overseas forum member over at chiphell got their hands on a 600p and ran some quick tests. From their photo (above), we can confirm the controller is not from Intel, but rather from Silicon Motion. The NAND is naturally from Intel, as is likely their controller firmware implementation, as these parts go through the same lengthy validation process as their other products.

Intel is going for the budget consumer play here. The flash will be running in TLC mode, likely with an SLC cache. Specs are respectable - 1.8GB/s reads, 560MB/s writes, random read 155k, random write 128k (4KB QD=32). By respectable specs I mean in light of the pricing:

600p-6000p pricing.png

Wow! These prices are ranging from $0.55/GB at 128GB all the way down to $0.35/GB for the 1TB part.

You might have noticed the Pro 6000p in that list. Those are nearly identical to the 600p save some additional firmware / software tweaks to support IT infrastructure remote secure erase.

Intel also refreshed their DataCenter (DC) lineup. The SSD DC S3520 (SATA) and P3520 (PCIe/NVMe) were also introduced as a refresh, also using Intel's 3D NAND. We published our exclusive review of the Intel SSD DC P3520 earlier today, so check there for full details on that enterprise front. Before we move on, a brief moment of silence for the P3320 - soft-launched in April, but discontinued before it shipped. We hardly knew ye.

Lastly, Intel introduced a few additional products meant for the embedded / IoT sector. The SSD E 6000p is an M.2 PCIe part similar to the first pair of products mentioned in this article, while the SSD E 5420s comes in 2.5" and M.2 SATA flavors. The differentiator on these 'E' parts is enhanced AES 256 crypto.

Most of these products will be available 'next week', but the 600p 360GB (to be added) and 1TB capacities will ship in Q4.

Abbreviated press blast appears after the break.

Source: Intel

More space than even Jimmy Stewart would need to satisfy his voyeurism

Subject: Storage | August 18, 2016 - 02:59 PM |
Tagged: skyhawk, Seagate, rear window, hitchcock, 10TB

Seagate designed the 10TB SkyHawk HDD for recording video surveillance by adding in firmware they refer to as ImagePerfect.  This is designed for handling 24/7 surveillance and extends the endurance life of the drive to 180TB a year, for the length of the three year warranty.  Constantly recording video means this drive will write far more often than most other usages scenarios and reads will be far less important.  eTeknix tried the drive out in their usual suite of benchmarks; being somewhat difficult to set up a test to verify the claimed support for up to 64HD recordings simultaneously.  If you are looking for durable storage at a reasonable price and might even consider needing more than eight drives of storage you should check the SkyHawk out.

Seagate_SkyHawk-Photo-top-angle.jpg

"I’ve recently had a look at the 10TB IronWolf NAS HDD from Seagate and today it is time to take a closer look at its brother, the brand new SkyHawk DVR and NVR hard disk drive with a massive 10TB capacity. Sure, you could use NAS optimized drives for simple video setups, but having a video and camera optimized surveillance disk does bring advantages. Especially when your recorded video is critical."

Here are some more Storage reviews from around the web:

Storage

Source: eTeknix

IDF 2016: ScaleMP Merges Software-Defined Memory With Storage-Class Memory, Makes Optane Work Like RAM

Subject: Storage | August 16, 2016 - 04:05 PM |
Tagged: Virtual SMP, SMP, SDM-S, SDM-F, ScaleMP, IDF 2016, idf

ScaleMP has an exciting announcement at IDF today, but before we get into it, I need to do some explaining. Most IT specialists know how to employ virtualization to run multiple virtual environments within the same server, but what happens when you want to go the other way around?

ScaleMP-3.png

You might not have known it, but virtualization can go both ways. ScaleMP make such a solution, and it enables some amazing combinations of hardware all thrown at a single virtualized machine. Imagine what could be done with a system containing 32,768 CPUs and 2048TB (2PB) of RAM. Such a demand is actually more common than you might think:

ScaleMP-2.png

List of companies / applications of ScaleMP.

ScaleMP-4.png

ScaleMP's tech can fit into a bunch of different usage scenarios. You can choose to share memory, CPU cores, IO, or all three across multiple physical machines, all combined into a single beast of a virtualized OS, but with the launch of 3D XPoint there's one more thing that might come in handy as a sharable resource, as there is a fairly wide latency gap between NAND and RAM:

NAND RAM gap.png

Alright, now that we've explained the cool technology and the gap to be filled, onto the news of the day, which is that ScaleMP has announced that their Software Defined Memory tech has been optimized for Intel Optane SSDs. This means that ScaleMP / Optane customers will be able to combine banks of XPoint installed across multiple systems all into a single VM. Another key to this announcement is that due to the way ScaleMP virtualizes the hardware, the currently developing storage-class (NVMe) XPoint/Optane solutions can be mounted as if they were system memory, which should prove to be a nice stopgap until we see second generation 3D XPoint in DIMM form.

More to follow from IDF 2016. ScaleMP's press blast appears after the break.

IDF 2016: Intel To Demo Optane XPoint, Announces Optane Testbed for Enterprise Customers

Subject: Storage | August 16, 2016 - 02:00 PM |
Tagged: XPoint, Testbed, Optane, Intel, IDF 2016, idf

IDF 2016 is up and running, and Intel will no doubt be announcing and presenting on a few items of interest. Of note for this Storage Editor are multiple announcements pertaining to upcoming Intel Optane technology products.

P1020336-.JPG

Optane is Intel’s branding of their joint XPoint venture with Micron. Intel launched this branding at last year's IDF, and while the base technology is as high as 1000x faster than NAND flash memory, full solutions wrapped around an NVMe capable controller have shown to sit at roughly a 10x improvement over NAND. That’s still nothing to sneeze at, and XPoint settles nicely into the performance gap seen between NAND and DRAM.

XPoint.png

Since modern M.2 NVMe SSDs are encroaching on the point of diminishing returns for consumer products, Intel’s initial Optane push will be into the enterprise sector. There are plenty of use cases for a persistent storage tier faster than NAND, but most enterprise software is not currently equipped to take full advantage of the gains seen from such a disruptive technology.

DSC03304.JPG

XPoint die. 128Gbit of storage at a ~20nm process.

In an effort to accelerate the development and adoption of 3D XPoint optimized software, Intel will be offering enterprise customers access to an Optane Testbed. This will allow for performance testing and tuning of customers’ software and applications ahead of the shipment of Optane hardware.

U.2.jpg

I did note something interesting in Micron's FMS 2016 presentation. QD=1 random performance appears to start at ~320,000 IOPS, while the Intel demo from a year ago (first photo in this post) showed a prototype running at only 76,600 IOPS. Using that QD=1 example, it appears that as controller technology improves to handle the large performance gains of raw XPoint, so does performance. Given a NAND-based SSD only turns in 10-20k IOPS at that same queue depth, we're seeing something more along the lines of 16-32x performance gains with the Micron prototype. Those with a realistic understanding of how queues work will realize that the type of gains seen at such low queue depths will have a significant impact in real-world performance of these products.

future NVM.PNG

The speed of 3D XPoint immediately shifts the bottleneck back to the controller, PCIe bus, and OS/software. True 1000x performance gains will not be realized until second generation XPoint DIMMs are directly linked to the CPU.

The raw die 1000x performance gains simply can't be fully realized when there is a storage stack in place (even an NVMe one). That's not to say XPoint will be slow, and based on what I've seen so far, I suspect XPoint haters will still end up burying their heads in the sand once we get a look at the performance results of production parts.

intel-optane-ssd-roadmap.jpg

Leaked roadmap including upcoming Optane products

Intel is expected to show a demo of their own more recent Optane prototype, and we suspect similar performance gains there as their controller tech has likely matured. We'll keep an eye out and fill you in once we've seen Intel's newer Optane goodness it in action!

FMS 2016: Phison E8 Controller - NVMe Speed at SATA Cost

Subject: Storage | August 11, 2016 - 12:27 PM |
Tagged: ssd, PS5008-E8/E8T, PS5008-E8, PS5007-E7, phison, PCIe 3.0 x2, NVMe, FMS 2016, FMS, E8

I visited Phison to check out their new E8 controller:

DSC02725.jpg

Phsion opted to take a step back from the higher performance PCIe 3.0 x4 NVMe controllers out there, offering a solution with half the lanes. PCIe 3.0 x2 can still handle 1.5 GB/s, and this controller can exceed 200,000 random IOPS. Those specs are actually in-line with what most shipping x4 solutions offer today, meaning the E8 is more effectively saturating its more limited connectivity. Reducing the number of lanes helps Phison reduce the component cost of this controller to match the cost of typical SATA controllers while tripling the performance, greatly reducing the cost to produce NVMe SSDs.

In addition to 3D Flash support, the E8 is also a DRAM-less controller, meaning it has a small internal SRAM cache and has been architected to not need external DRAM installed on the PCB. DRAM-less means even lower costs. This can only be a good thing, since high performing NVMe parts at SATA costs is going to drive down the costs of even faster NVMe solutions, which is great for future buyers.

Press blast after the break.

Source: Phison

FMS 2016: Micron QuantX XPoint Prototype SSD Spotted

Subject: Storage | August 11, 2016 - 12:06 PM |
Tagged: FMS, FMS 2016, XPoint, micron, QuantX, nand, ram

Earlier this week, Micron launched their QuantX branding for XPoint devices, as well as giving us some good detail on expected IOPS performance of solutions containing these new parts:

U.2.jpg

Thanks to the very low latency of XPoint, the QuantX solution sees very high IOPS performance at a very low queue depth, and the random performance very quickly scales to fully saturate PCIe 3.0 x4 with only four queued commands. Micron's own 9100 MAX SSD (reviewed here), requires QD=256 (64x increase) just to come close to this level of performance! At that same presentation, a PCIe 3.0 x8 QuantX device was able to double that throughput at QD=8, but what are these things going to look like?

DSC02634.jpg

The real answer is just like modern day SSDs, but for the time being, we have the prototype unit pictured above. This is essentially an FPGA development board that Micron is using to prototype potential controller designs. Dedicated ASICs based on the final designs may be faster, but those take a while to ramp up volume production.

DSC02636.jpg

So there it is, in the flesh, nicely packaged and installed on a complete SSD. Sure it's a prototype, but Intel has promised we will see XPoint before the end of the year, and I'm excited to see this NAND-to-DRAM performance-gap-filling tech come to the masses!

DSC02095.jpg

FMS 2016: Liqid Combines Quad M.2 in to Powerful Packages

Subject: Storage | August 11, 2016 - 11:18 AM |
Tagged: FMS, FMS 2016, Liqid, kingston, toshiba, phison, U.2, HHHL, NVMe, ssd

A relative newcomer this year at Flash Memory Summit was Liqid. These guys are essentially creating an ecosystem from a subset of parts. Let's start with Toshiba:

DSC02652.jpg

At Toshiba's booth, we spotted their XG3 being promoted as being part of the Liqid solution. We also saw a similar demo at the Phison booth, meaning any M.2 parts can be included as part of their design. Now let us get a closer look at the full package options and what they do:

DSC02316.jpg

This demo, at the Kingston booth, showed a single U.2 device cranking out 835,000 4k IOPS. This is essentially saturating its PCIe 3.0 x4 link with random IO's, and it actually beats the Micron 9100 that we just reviewed!

DSC02317.jpg

How can it pull this off? The trick is that there are actually four M.2 SSDs in that package, along with a PLX switch. The RAID must be handled on the host side, but so long as you have software that can talk to multiple drives, you'll get full speed from this part.

More throughput can be had by switching to a PCIe 3.0 x8 link on a HHHL form factor card:

DSC02318.jpg

That's 1.3 million IOPS from a single HHHL device! Technically this is four SSDs, but still, that's impressively fast and is again saturating the bus, but this time it's PCIe 3.0 x8 being pegged!

DSC02319.jpg

We'll be tracking Liqid's progress over the coming months, and we will definitely test these solutions as they come to market (we're not there just yet). More to follow from FMS 2016!

FMS 2016: Supermicro All-Flash NVMe Systems - Switching PCIe up to 48 SSDs!

Subject: Storage | August 11, 2016 - 10:59 AM |
Tagged: FMS, SYS-2028U-TN24R4T+, SYS-1028U-TN10RT+, supermicro, SSG-2028R-NR48N, server, NVMe, FMS 2016

Supermicro was at FMS 2016, showing off some of their NVMe chassis:

DSC02290.jpg

The first model is the SYS-1028U-TN10RT+. This 1U chassis lets you hot swap 10 2.5" U.2 SSDs, connecting all lanes directly to the host CPUs.

DSC02294.jpg

Supermicro's custom PCB and interposer links all 40 PCIe lanes to the motherboard / CPUs.

DSC02291.jpg

Need more drives installed? Next up is the SYS-2028U-TN24R4T+, which uses a pair of PCIe switches to connect 24 U.2 SSDs to the same pair of CPUs.

DSC02292.jpg

Need EVEN MORE drives installed? The SSG-2028R-NR48N uses multiple switches to connect 48 U.2 SSDs in a single 2U chassis! While the switches will limit the ultimate sequential throughput of the whole package to PCIe 3.0 x40, we know that when it comes to spreading workloads across multiple SSDs, bandwidth bottlenecks are not the whole story, as latency is greatly reduced for a given workload. With a fast set of U.2 parts installed in this chassis, the raw IOPS performance would likely saturate all threads / cores of the installed Xeons before it saturated the PCIe bus!

More to follow as we wrap up FMS 2016!

Source: Supermicro

FMS 2016: Samsung To Announce 64-Layer 4th Gen V-NAND, 32TB 2.5" SSD

Subject: Storage | August 10, 2016 - 02:00 PM |
Tagged: 2.5, V-NAND, ssd, Samsung, nand, FMS 2016, FMS, flash, 64-Layer, 32TB, SAS, datacenter

At a huge press event like Flash Memory Summit, being in the right place at the right time (and with the right camera), matters greatly. I'll just let a picture say a thousand words for me here:

64-Layer V-NAND.jpg

..now this picture has been corrected for extreme parallax and was taken in far from ideal conditions, but you get the point. Samsung's keynote is coming up later today, and I have a hunch this will be a big part of what they present. We did know 64-Layer was coming, as it was mentioned in Samsung's last earnings announcement, but confirmation is nice.

*edit* now that the press conference has taken place, here are a few relevant slides:

DSC02430.jpg

DSC02438.jpg

With 48-Layer V-NAND announced last year (and still rolling out), it's good to see Samsung pushing hard into higher capacity dies. 64-Layer enables 512Gbits (64GB) per die, and 100MB/s per die maximum throughput means even lower capacity SSDs should offer impressive sequentials.

48-V-NAND.png

Samsung 48-Layer V-NAND. Pic courtesy of TechInsights.

64-Layer is Samsung's 4th generation of V-NAND. We've seen 48-Layer and 32-Layer, but few know that 24-Layer was a thing (but was mainly in limited enterprise parts).

We will know more shortly, but for now, dream of even higher capacity SSDs :)

*edit* and this just happened:

Photo Aug 10, 10 51 31.jpg

*additional edit* - here's a better picture taken after the keynote:

DSC02562.jpg

DSC02541.jpg

The 32TB model in their 2.5" form factor displaces last years 16TB model. The drive itself is essentially identical, but the flash packages now contain 64-layer dies, doubling the available capacity of the device.

FMS 2016: Seagate Demos Facebook Lightning, 60TB 3.5" SSD!

Subject: Storage | August 10, 2016 - 01:59 PM |
Tagged: FMS 2016, ssd, Seagate, Lightning, facebook, 60TB

Seagate showed off some impressive Solid State Storage at Flash Memory Summit 2016.

DSC02135.jpg

First up is the Nytro XM1440. This is a 2TB M.2 22110 SSD complete with enterprise firmware and power loss protection. Nice little package, but what's it for?

DSC02136.jpg

..well if you have 60 of them, you can put them into this impressive 1U chassis. This is Facebook's Lightning chassis (discussed yesterday). With Seagate's 2TB parts, this makes for 120TB of flash in a 1U footprint. Great for hyperscale datacenters.

Now onto what you came to see:

DSC02123.jpg

This is the 'Seagate 60TB SAS SSD'. It really doesn't need a unique name because that capacity takes care of that for us! This is a 3.5" form factor SAS 12Gbit beast of a drive.

DSC02131.jpg

DSC02134.jpg

They pulled this density off with a few tricks which I'll walk through. First was the stacking of three PCBs with flash packages on both sides. 80 packages in total.

DSC02124.jpg

Next up is Seagate's ONFi fan-out ASIC. This is required because you can only have so many devices connected to a single channel / bus of a given SSD controller. The ASIC acts as a switch for data between the controller and flash dies.

DSC02125.jpg

With so much flash present, we could use a bit of fault tolerance. You may recall RAISE from SandForce (who Seagate now owns). This is effectively RAID for flash dies, enabling greater resistance to individual errors across the array.

DSC02129.jpg

Finally we have the specs. With a dual 12 Gbit SAS inteface, the 60TB SAS SSD can handle 1.5 GB/s reads, 1.0 GB/s writes, and offers 150,000 IOPS at 4KB QD32 random (SAS tops out at QD32). The idea behind drives like these is to cram as much storage into the smallest space possible, and this is certainly a step in the right direction.

DSC02138.jpg

We also saw the XP7200 add-in card. I found this one interesting as it is a PCIe 3.0 x16 card with four M.2 PCIe 3.0 x4 SSDs installed, but *without* a PLX switch to link them to the host system. This is possible only in server systems supporting PCIe Bifurcation, where the host can recognize that certain sets of lanes are linked to individual components.

More to follow from FMS 2016! Press blast after the break.

Mobile speed, the Samsung Portable SSD T3

Subject: Storage | August 9, 2016 - 06:44 PM |
Tagged: ssd t3, Samsung, portable storage

Just because you are on the road there is no reason to subject yourself to HDD speeds when transferring files.  Not only will an SSD be quieter and more resilient but the USB 3.1 Gen 1 Type C port theoretically offers up to 450MB/s transfer speeds.  This particular 2TB portable SSD uses the same MGX controller as the 850 EVO, the NAND is Samsung's 48-layer TLC V-NAND.  The Tech Report previously tried out the T1 model so their expectations were that this drive would improve performance in addition to offering larger sizes of drive.  Does it live up to expectations?  Find out in their full review.

Al just reminded yours truly we posted a review of the T3 back in February.

main.jpg

"Not all new SSDs go inside your computer. We take a quick look at Samsung's latest V-NAND-powered external drive, the Portable SSD T3, to see what it's like to put 2TB of fast storage in one's pocket."

Here are some more Storage reviews from around the web:

Storage

FMS 2016: Facebook Talks WORM QLC NAND Flash, Benchmarks XPoint

Subject: Storage | August 9, 2016 - 05:59 PM |
Tagged: XPoint, Worm, storage, ssd, RocksDB, Optane, nand, flash, facebook

At their FMS 2016 Keynote, Facebook gave us some details on the various storage technologies that fuel their massive operation:

DSC02009.jpg

In the four corners above, they covered the full spectrum of storing bits. From NVMe to Lightning (huge racks of flash (JBOF)), to AVA (quad M.2 22110 NVMe SSDs), to the new kid on the block, WORM storage. WORM stands for Write Once Read Many, and as you might imagine, Facebook has lots of archival data that they would like to be able to read quickly, so this sort of storage fits the bill nicely. How do you pull off massive capacity in flash devices? QLC. Forget MLC or TLC, QLC stores four bits per cell, meaning there are 16 individual voltage states for each cell. This requires extremely precise writing techniques and reads must appropriately compensate for cell drift over time, and while this was a near impossibility with planar NAND, 3D NAND has more volume to store those electrons. This means one can trade the endurance gains of 3D NAND for higher bit density, ultimately enabling SSDs upwards of ~100TB in capacity. The catch is that they are rated at only ~150 write cycles. This is fine for archival storage requiring WORM workloads, and you still maintain NAND speeds when it comes to reading that data later on, meaning that decade old Facebook post will appear in your browser just as quickly as the one you posted ten minutes ago.

DSC02028.jpg

Next up was a look at some preliminary Intel Optane SSD results using RocksDB. Compared to a P3600, the prototype Optane part offers impressive gains in Facebook's real-world workload. Throughput jumped by 3x, and latency reduced to 1/10th of its previous value. These are impressive gains given this fairly heavy mixed workload.

More to follow from FMS 2016!

FMS 2016: Micron Keynote Teases XPoint (QuantX) Real-World Performance

Subject: Storage | August 9, 2016 - 03:33 PM |
Tagged: XPoint, QuantX, nand, micron

Micron just completed their keynote address at Flash Memory Summit, and as part of the presentation, we saw our first look at some raw scaled Queue Depth IOPS performance figures from devices utilizing XPoint memory:

U.2.jpg

These are the performance figures from an U.2 device with a PCIe 3.0 x4 link. Note the outstanding ramp up to full saturation of the bus at a QD of only 4. Slower flash devices require much more parallelism and a deeper queue to achieve sufficient IOPS throughput to saturate that same bus. That 'slow' device on the bottom there, I'm pretty certain, is Micron's own 9100 MAX, which was the fastest thing we had tested to date, and it's being just walked all over by this new XPoint prototype!

Ok, so that's damn fast, but what if you had an add in card with PCIe 3.0 x8?

HHHL.jpg

Ok, now that's just insane! While the queue had to climb to ~8 to reach these figures, that's 1.8 MILLION IOPS from a single HHHL add in card. That's greater than 7 GB/s worth of 4KB random performance!

latency.jpg

In addition to the crazy throughput and IOPS figures, we also see latencies running at 1/10th that of flash-based NVMe devices.

x10.jpg

..so it appears that while the cell-level performance of XPoint boasts 1000x improvements over flash, once you implement it into an actual solution that must operate within the bounds of current systems (NVMe and PCIe 3.0), we currently get only a 10x improvement over NAND flash. Given how fast NAND already is, 10x is no small improvement, and XPoint still opens the door for further improvement as the technology and implementations mature over time.

More to follow as FMS continues!

FMS 2016: Micron Launches 3D UFS SSDs, Brands 3D XPoint as QuantX

Subject: Storage | August 9, 2016 - 01:09 PM |
Tagged: XPoint, UFS, QuantX, micron, FMS 2016, FMS

The UFS standard aims to bring us lightning fast microSD cards that perform on-par with SATA SSDs. Samsung introduced theirs earlier this month, and now Micron has announced their solution:

Mobile 3D NAND UFS with specs and logo.jpg

As you can see, UFS is not just for SD cards. These are going to be able to replace embedded memory in mobile devices, displacing the horror that is eMMC with something way faster. These devices are smaller than a penny, with a die size of just over 60 mm squared and boast a 32GB capacity.

UFS.png

One version of the UFS 2.1 devices also contains Micron's first packaged offering of LPDDR4X. This low power RAM offers an additional 20% power savings over existing LPDDR4.

Also up is an overdue branding of Micron's XPoint (spoken 'cross-point') products:

MIcron_QuantX_Logo_Black.Gray_60%.png

QuantX will be the official branding of Micron products using XPoint technology. This move is similar to the one Intel made at IDF 2015, where they dubbed their solutions with the Optane moniker.

More to follow from FMS 2016. A few little birdies told me there will be some good stuff presented this morning (PST), so keep an eye out, folks!

Press blast for Micron's UFS goodness appears after the break.

Microsemi Flashtec Controllers Offer PCIe 3.0 x8 NVMe SSDs up to 20TB

Subject: Storage | August 8, 2016 - 10:40 AM |
Tagged: storage, ssd, solid state drive, PCIe 3.0 x8, PCI-E 3.0, NVMe2032, NVMe2016, NVMe, Microsemi, Flashtec

Microsemi's Flashtec NVMe SSD controllers are now in production, and as Computer Base reports (Google-translated version of the page available here) these controllers use twice as many PCIe lanes than current offerings with a x8 PCI-E 3.0 connection, and can support up to 20 TB of flash capacity.

flashtec.jpg

Image credit: Computer Base

"The NVMe controller destined for the professional high-performance segment and work with PCIe 3.0 x8 or two x4 PCIe 3.0. The NVMe2032 has 32 memory channels (and) NVMe2016 (has) 16. When using 256-Gbit flash SSDs can be implemented with up to 20 terabytes of storage."

The 32-channel NVMe2032 boasts up to 1 million IOPS in 4K random read performance, and the controller supports DDR4 memory for faster cache performance. The announcement of the availability of these chips comes just before the start of Flash Memory Summit, which our own Allyn Malventano will be attending. Stay tuned for more flashy SSD news to come!