Iris Pro on Linux

Subject: Processors | July 31, 2015 - 03:37 PM |
Tagged: iris pro, Broadwell, linux, i7-5775C

The graphics core of new CPUs used to have issues on Linux at launch but recently this has become much less of an issue.  The newly released Iris Pro on the 5770C follows this trend as you can see in the benchmarks at Phoronix.  The OpenGL performance is a tiny bit slower overall on Linux, apart from OpenArena, but not enough to ruin your gaming experience.  With a new kernel on the horizon and a community working with the new GPU you can expect the performance gap to narrow.  Low cost gaming on a Linux machine becomes more attractive every day.

image.php_.jpg

"Resulting from the What Windows 10 vs. Linux Benchmarks Would You Like To See and The Phoronix Test Suite Is Running On Windows 10, here are our first benchmarks comparing the performance of Microsoft's newly released Windows 10 Pro x64 against Fedora 22 when looking at the Intel's OpenGL driver performance across platforms."

Here are some more Processor articles from around the web:

Processors

 

Source: Phoronix

AMD A8-7670K (Godavari) Launches with Steamroller

Subject: Processors | July 22, 2015 - 09:56 PM |
Tagged: amd, APU, Godavari, a8, a8-7670k

AMD's Godavari architecture is the last one based on Bulldozer, which will hold the company's product stack over until their Zen architecture arrives in 2016. The A10-7870K was added a month ago, with a 95W TDP at a MSRP of $137 USD. This involved a slight performance bump of +200 MHz at its base frequency, but a +100 MHz higher Turbo than its predecessor when under high load. More interesting, it does this at the same TDP and the same basic architecture.

amd-2015-A8-7670K+Blog+Post+Benchmark+Graphic+1.JPG

Remember that these are AMD's benchmarks.

The refresh has been expanded to include the A8-7670K. Some sites have reported that this uses the Excavator architecture as seen in Carrizo, but this is not the case. It is based on Steamroller. This product has a base clock of 3.6 GHz with a Turbo of up to 3.9 GHz. This is a +300 MHz Base and +100 MHz Turbo increase over the previous A8-7650K. Again, this is with the same architecture and TDP. The GPU even received a bit of a bump, too. It is now clocked at 757 MHz versus the previous generation's 720 MHz with all else equal, as far as I can tell. This should lead to a 5.1% increase in GPU compute throughput.

The A8-7670K just recently launched for an MSRP of $117.99. This 20$ saving should place it in a nice position below the A10-7870K for mainstream users.

Source: AMD

Meet the Intel Core i7-5775C Broadwell CPU

Subject: Processors | July 20, 2015 - 05:58 PM |
Tagged: Intel, i7-5775C, LGA1150, Broadwell, crystalwell

To keep it interesting and to drive tech reviewers even crazier, Intel has changed their naming scheme again, with C now designating an unlocked CPU as opposed to K on the new Broadwell models.  Compared to the previous 4770K, the TPD is down to 65W from 84W, the L3 cache has shrunk from 8MB to 6MB and the frequency of both the base and turbo clocks have dropped 200MHz. It does have the Iris Pro 6200 graphics core, finally available on an LGA chip.  Modders Inc. took the opportunity to clock both the flagship Haswell and Broadwell chips to 4GHz to do a clock for clock comparison of the architectures.  Check out the review right here.

5775diemap.jpg

"While it is important to recognize one's strengths and leverage it as an asset, accepting shortcomings and working on them is equally as important for the whole is greater than the sum of its parts."

Here are some more Processor articles from around the web:

Processors

Source: Modders Inc

TSMC Plans 10nm, 7nm, and "Very Steep" Ramping of 16nm.

Subject: Graphics Cards, Processors, Mobile | July 19, 2015 - 06:59 AM |
Tagged: Zen, TSMC, Skylake, pascal, nvidia, Intel, Cannonlake, amd, 7nm, 16nm, 10nm

Getting smaller features allows a chip designer to create products that are faster, cheaper, and consume less power. Years ago, most of them had their own production facilities but that is getting rare. IBM has just finished selling its manufacturing off to GlobalFoundries, which was spun out of AMD when it divested from fabrication in 2009. Texas Instruments, on the other hand, decided that they would continue manufacturing but get out of the chip design business. Intel and Samsung are arguably the last two players with a strong commitment to both sides of the “let's make a chip” coin.

tsmc.jpg

So where do you these chip designers go? TSMC is the name that comes up most. Any given discrete GPU in the last several years has probably been produced there, along with several CPUs and SoCs from a variety of fabless semiconductor companies.

Several years ago, when the GeForce 600-series launched, TSMC's 28nm line led to shortages, which led to GPUs remaining out of stock for quite some time. Since then, 28nm has been the stable work horse for countless high-performance products. Recent chips have been huge, physically, thanks to how mature the process has become granting fewer defects. The designers are anxious to get on smaller processes, though.

In a conference call at 2 AM (EDT) on Thursday, which is 2 PM in Taiwan, Mark Liu of TSMC announced that “the ramping of our 16 nanometer will be very steep, even steeper than our 20nm”. By that, they mean this year. Hopefully this translates to production that could be used for GPUs and CPUs early, as AMD needs it to launch their Zen CPU architecture in 2016, as early in that year as possible. Graphics cards have also been on that technology for over three years. It's time.

Also interesting is how TSMC believes that they can hit 10nm by the end of 2016. If so, this might put them ahead of Intel. That said, Intel was also confident that they could reach 10nm by the end of 2016, right until they announced Kaby Lake a few days ago. We will need to see if it pans out. If it does, competitors could actually beat Intel to the market at that feature size -- although that could end up being mobile SoCs and other integrated circuits that are uninteresting for the PC market.

Following the announcement from IBM Research, 7nm was also mentioned in TSMC's call. Apparently they expect to start qualifying in Q1 2017. That does not provide an estimate for production but, if their 10nm schedule is both accurate and also representative of 7nm, that would production somewhere in 2018. Note that I just speculated on an if of an if of a speculation, so take that with a mine of salt. There is probably a very good reason that this date wasn't mentioned in the call.

Back to the 16nm discussion, what are you hoping for most? New GPUs from NVIDIA, new GPUs from AMD, a new generation of mobile SoCs, or the launch of AMD's new CPU architecture? This should make for a highly entertaining comments section on a Sunday morning, don't you agree?

AMD Projects Decreased Revenue by 8% for Q2 2015

Subject: Graphics Cards, Processors | July 7, 2015 - 08:00 AM |
Tagged: earnings, amd

The projections for AMD's second fiscal quarter had revenue somewhere between flat and down 6%. The actual estimate, as of July 6th, is actually below the entire range. They expect that revenue is down 8% from the previous quarter, rather than the aforementioned 0 to 6%. This is attributed to weaker APU sales in OEM devices, but they also claim that channel sales are in line with projections.

amd-new2.png

This is disappointing news for fans of AMD, of course. The next two quarters will be more telling though. Q3 will count two of the launch months for Windows 10, which will likely include a bunch of new and interesting devices and aligns well with back to school season. We then get one more chance at a pleasant surprise in the fourth quarter and its holiday season, too. My intuition is that it won't be too much better than however Q3 ends up.

One extra note: AMD has also announced a “one-time charge” of $33 million USD related to a change in product roadmap. Rather than releasing designs at 20nm, they have scrapped those plans and will architect them for “the leading-edge FinFET node”. This might be a small expense compared to how much smaller the process technology will become. Intel is at 14nm and will likely be there for some time. Now AMD doesn't need to wait around at 20nm in the same duration.

Source: AMD

Report: No Stock Cooler Bundled with Intel Skylake-K Unlocked CPUs

Subject: Processors | June 26, 2015 - 12:32 PM |
Tagged: skylake-s, Skylake-K, Intel Skylake, cpu cooler

A report from Chinese-language site XFastest contains a slide reportedly showing Intel's cooling strategy for upcoming retail HEDT (High-end Desktop) Skylake "K" processors.

skylake_k.jpg

Typically Intel CPUs (outside of the current high-end enthusiast segment on LGA2011) have been packaged with one of Intel's ubiquitous standard performance air coolers, and this move to eliminate them from future unlocked SKUs makes sense for unlocked "K" series processors. The slide indicates that a 135W solution will be recommended, even if the TDP of the processor is still in the 91-95W range. The additional headroom is certainly advisable, and arguably the stock cooler never should have been used with products like the 4770K and 4790K, which more than push the limits of the stock cooler (and often allow 90 °C at load without overclocking in my experience with these high-end chips).

Aftermarket cooling (with AIO liquid CPU coolers in particular) has been essential for maximizing the performance of an unlocked CPU all along, so this news shouldn't effect the appeal of these upcoming CPUs for those interested in the latest Intel offerings (though it won't help enhance your collection of unused stock heatsinks).

AMD Carrizo SKUs and Dual Graphics Options Announced

Subject: Graphics Cards, Processors, Mobile | June 4, 2015 - 04:58 PM |
Tagged: amd, carrizo

My discussion of the Carrizo architecture went up a couple of days ago. The post did not include specific SKUs because we did not have those at the time. Now we do, and there will be products: one A8-branded, one A10-branded, and one FX-branded.

amd-2015-carrizo-skus.jpg

All three will be quad-core parts that can range between 12W and 35W designs, although the A8 processor does not have a 35W mode listed in the AMD Dual Graphics table. The FX-8800P is an APU that has all eight GPU cores while the A-series APUs have six. The A10-8700P and the A8-8600P are separated by a couple hundred megahertz base and boost CPU clocks, and 80 MHz GPU clock.

amd-2015-carrizo-dualgpu.jpg

Also, we have been given a table of AMD Radeon R5 and R7 M-series GPUs that can be paired with Carrizo in an AMD Dual Graphics setup. These GPUs are the R7 M365, R7 M360, R7 M350, R7 M340, R5 M335, and R5 M330. They cannot be paired with every Carrizo APU, and some pairings only work in certain power envelopes. Thankfully, this table should only be relevant to OEMs, because end-users are receiving pre-configured systems.

Pricing and availability will depend on OEMs, of course.

Source: AMD

Computex 2015: Intel Announces Quad-Core Broadwell for Desktop, Mobile

Subject: Processors, Shows and Expos | June 2, 2015 - 11:10 AM |
Tagged: Intel, computex 2015, computex, Broadwell

Earlier this morning you saw us post a story about MSI updating its line of 20 notebooks with new Broadwell processors. Though dual-core Broadwell has been available for Ultrabooks and 2-in-1s for some time already, today marks the release of the quad-core variations we have been waiting on for some time. Available for mobile designs, as well as marking the very first Iris Pro graphics implementation for desktop users, Broadwell quad-core parts look to be pretty impressive.

Today Intel gives to the world a total 10 new processors for content creators and enthusiasts. Two of these parts are 65 watt SKUs in LGA packaging for use by enthusiasts and DIY builders. The rest are BGA designs for all-in-one PCs and high performance notebooks and include both 65 watt and 47 watt variants. And most are using the new Iris Pro Graphics 6200 implementation.

bwslide1.jpg

For desktop users, we get the Core i7-5775C and the Core i5-5675C. The Core i7 model is a quad-core, HyperThreaded CPU with a base clock of 3.3 GHz and a max Turbo clock of 3.7 GHz. It's unlocked so that overclockers and can mess around with them in the same way do with Haswell. The Iris Pro Graphics 6200 can scale up to 1150 MHz and rated DDR3L memory speeds are up to 1600 MHz. 6MB of L3 cache, a 65 watt TDP and a tray price of $366 round out the information we have.

bwslide2.jpg

Click to Enlarge

The Core i5-5675C does not include HyperThreading, has clock speed ranges of 3.1 GHz to 3.6 GHz and only sees the Iris Pro scale to 1100 MHz. Also, it drops from 6MB of L3 cache to 4MB. Pricing on this model will start a $276.

These two processors mark the first time we have seen Iris Pro graphics in a socketed form factor, something we have been asking Intel to offer for at least a couple of generations. They focused on 65 watt TDPs rather than anything higher mostly because of the target audience for these chips: if you are interested in the performance of integrated graphics then you likely are pushing a small form factor design or HTPC of some kind. If you have a Haswell-capable motherboard then you SHOULD be able to utilize one of these new processors though you'll want a Z97 board if you are going to try to overclock it.

From a performance standpoint, the Core i7-5775C will offer 2x the gaming performance, 35% faster video transcoding and 20% higher compute performance when compared to the previous top-end 65 watt Haswell part, the Core i7-4790S. That 4th generation part uses Intel HD Graphics 4600 that does not include the massive eDRAM that makes Iris Pro implementations so unique.

For mobile and AIO buyers, Intel has a whole host of new processors to offer. You'll likely find most of the 65 watt parts in all-in-one designs but you may see some mobile designs that go crazy and opt for them too. For the rest of the gaming notebook designs there are CPUs like the Core i7-5950HQ, a quad-core HyperThreaded part with a base clock of 2.9 GHz and max Turbo clock of 3.8 GHz inside a TDP of 47 watts. The Iris Pro Graphics 6200 will scale from 300 to 1150 MHz so GPU performance should basically be on par with the desktop 65-watt equivalent. Pricing is pretty steep though: starting at $623.

bwslide3.jpg

Click to Enlarge

These new processors, especially the new 5950HQ, offer impressive compute and gaming performance.

bwperf1.jpg

Compared to the Core i7-5600U, already available and used in some SFF and mobile platforms, the Core i7-5950HQ is 2.5x faster in SPECint and nearly 2x faster in a video conversion benchmark. Clearly these machines are going to be potent desktop replacement options.

bwperf2.jpg

For mainstream gamers, the Iris Pro Graphics 6200 on 1920x1080 displays will see some impressive numbers. Players of League of Legends, Heroes of the Storm and WoW will see over 60 FPS at the settings listed in the slide above.

We are still waiting for our hardware to show up but we have both the LGA CPUs and notebooks using the BGA option en route. Expect testing from PC Perspective very soon!

Report: Intel NUC with 6th Gen Skylake Specifications Leaked

Subject: Processors | June 2, 2015 - 08:40 AM |
Tagged: rumor, nuc, leak, Intel Skylake, core i5, core i3

A report from FanlessTech shows what appears to be a leaked slide indicating an upcoming Intel 6th-generation Skylake NUC.

SKYLAKE_NUC.png

The site claims that these new Intel NUCs will be coming out in Q3 for a 6th-generation Core i3 model, and in Q4 for a 6th-gen Core i5 model. and this new NUC will feature 15W TDP Skylake-U processors and 1866 MHz DDR4 memory, along with fast M.2 storage and an SDXC card reader.

True to their name, FanlessTech speculates about the possibility of a passively-cooled version of the NUC: “Out of the box, the Skylake NUC is actively cooled. But fanless cases from Akasa, HDPLEX, Streacom and cirrus7 are to be expected.

Here are the reported specs of this NUC:

  • Intel 6th Generation Core i3 / i5-6xxxU (15W TDP)
  • Dual-channel DDR4 SODIMMs 1.2V, 1866 MHz (32GB max)
  • Intel HD Graphics 6xxx
  • 1 x mini HDMI 1.4a
  • 1 x mini DisplayPort 1.2
  • 2 x USB 3.0 ports on the back panel
  • 2 x USB 3.0 ports on the front panel (1 x charging capable)
  • 2 x Internal USB 2.0 via header
  • Internal support for M.2 SSD card (22x42 or 22x80)
  • Internal SATA3 support for 2.5" HDD/SSD (up to 9.5mm thickness)
  • SDXC slot with UHS-I support on the side
  • Intel 10/100/1000Mbps Network Connection
  • Intel Wireless-AC xxxx M.2 soldered-down, wireless antennas
  • IEEE 802.11ac, Bluetooth 4, Intel® Wireless Display
  • Up to 7.1 surround audio via Mini HDMI and Mini DisplayPort
  • Headphone/Microphone jack on the front panel
  • Consumer Infrared sensor on the front panel
  • 19V, 65W wall-mount AC-DC power adapter

No further information has been revealed about this alleged upcoming NUC, but we will probably know more soon.

Source: FanlessTech

Rumor: Intel Core i7-6700K (Skylake-S) Benchmarks Leaked

Subject: Processors | May 28, 2015 - 03:44 PM |
Tagged: Intel, Skylake, skylake-s, haswell, devil's canyon

For a while, it was unclear whether we would see Broadwell on the desktop. With the recently leaked benchmarks of the Intel Core i7-6700K, it seems all-but-certain that Intel will skip it and go straight to Skylake. Compared to Devil's Canyon, the Haswell-based Core i7-4790K, the Skylake-S Core i7-6700K has the same base clock (4.0 GHz) and same full-processor Turbo clock (4.2 GHz). Pretty much every improvement that you see is pure performance per clock (IPC).

intel-2015-cpumonkey-skylakes-benchmark.png

Image Credit: CPU Monkey

In multi-threaded applications, the Core i7-6700K tends to get about a 9% increase while, when a single core is being loaded, it tends to get about a 4% increase. Part of this might be the slightly lower single-core Turbo clock, which is said to be 4.2 GHz instead of 4.4 GHz. There might also be some increased efficiency with HyperThreading or cache access -- I don't know -- but it would be interesting to see.

I should note that we know nothing about the GPU. In fact, CPU Monkey fails to list a GPU at all. Intel has expressed interest in bringing Iris Pro-class graphics to the high-end mainstream desktop processors. For someone who is interested in GPU compute, especially with Explicit Unlinked MultiAdapter in DirectX 12 upcoming, it would be nice to see GPUs be ubiquitous and always enabled. It is expected to have the new GT4e graphics with 72 compute units and either 64 or 128MB of eDRAM. If clocks are equivalent, this could translate well over a teraflop (~1.2 TFLOPs) of compute performance in addition to discrete graphics. In discrete graphics, that would be nearly equivalent to an NVIDIA GTX 560 Ti.

We are expecting to see the Core i7-6700K launch in Q3 of this year. We'll see.

Source: CPU Monkey

Rumor: Only Xeon-based Skylake CPUs Getting AVX-512

Subject: Processors | May 27, 2015 - 09:45 PM |
Tagged: xeon, Skylake, Intel, Cannonlake, avx-512

AVX-512 is an instruction set that expands the CPU registers from 256-bit to 512-bit. It comes with a core specification, AVX-512 Foundation, and several extensions that can be added where it makes sense. For instance, AVX-512 Exponential and Reciprocal Instructions (ERI) help solve transcendental problems, which occur in geometry and are useful for GPU-style architectures. As such, it appears in Knights Landing but not anywhere else.

intel-2015-instruction-set-support.png

Image Credit: Bits and Chips

Today's rumor is that Skylake, the successor to Broadwell, will not include any AVX-512 support in its consumer parts. According to the lineup, Xeons based on Skylake will support AVX-512 Foundation, Conflict Detection Instructions, Vector Length Extensions, Byte and Word Instructions, and Double and Quadword Instructions. Fused Multiply and Add for 52-bit Integers and Vector Byte Manipulation Instructions will not arrive until Cannonlake shrinks everything down to 10nm.

The main advantage of larger registers is speed. When you can fit 512 bits of data in a memory bank and operate upon it at once, you are able to do several, linked calculations together. AVX-512 has the capability to operate on sixteen 32-bit values at the same time, which is obviously sixteen times the compute performance compared with doing just one at a time... if all sixteen undergo the same operation. This is especially useful for games, media, and other, vector-based workloads (like science).

This also makes me question whether the entire Cannonlake product stack will support AVX-512. While vectorization is a cheap way to get performance for suitable workloads, it does take up a large amount of transistors (wider memory, extra instructions, etc.). Hopefully Intel will be able to afford the cost with the next die shrink.

Oculus Rift "Full Rift Experience" Specifications Released

Subject: Graphics Cards, Processors, Displays, Systems | May 15, 2015 - 03:02 PM |
Tagged: Oculus, oculus vr, nvidia, amd, geforce, radeon, Intel, core i5

Today, Oculus has published a list of what they believe should drive their VR headset. The Oculus Rift will obviously run on lower hardware. Their minimum specifications, published last month and focused on the Development Kit 2, did not even list a specific CPU or GPU -- just a DVI-D or HDMI output. They then went on to say that you really should use a graphics card that can handle your game at 1080p with at least 75 fps.

oculus-dk2-product.jpg

The current list is a little different:

  • NVIDIA GeForce GTX 970 / AMD Radeon R9 290 (or higher)
  • Intel Core i5-4590 (or higher)
  • 8GB RAM (or higher)
  • A compatible HDMI 1.3 output
  • 2x USB 3.0 ports
  • Windows 7 SP1 (or newer).

I am guessing that, unlike the previous list, Oculus has a more clear vision for a development target. They were a little unclear about whether this refers to the consumer version or the current needs of developers. In either case, it would likely serve as a guide for what they believe developers should target when the consumer version launches.

This post also coincides with the release of the Oculus PC SDK 0.6.0. This version pushes distortion rendering to the Oculus Server process, rather than the application. It also allows multiple canvases to be sent to the SDK, which means developers can render text and other noticeable content at full resolution, but scale back in places that the user is less likely to notice. They can also be updated at different frequencies, such as sleeping the HUD redraw unless a value changes.

The Oculus PC SDK (0.6.0) is now available at the Oculus Developer Center.

Source: Oculus

Intel Announces Xeon E7 v3 Processors Based on Haswell-EX

Subject: Processors | May 7, 2015 - 07:36 PM |
Tagged: Intel, xeon, xeon e7 v3, xeon e7

On May 5th, Intel officially announced their new E7 v3 lineup of Xeon processors. This replaces the Xeon E7 v2 processors, which were based on Ivy Bridge-EX, with the newer Haswell-EX architecture. Interestingly, WCCFTech has Broadwell-EX listed next, even though the desktop is expected to mostly skip Broadwell and jump to Skylake in high-performance roles.

INTEL_XeonE7v3_1_p.jpg

The largest model is the E7-8890 v3, which contains eighteen cores fed by a total of 45MB in L3 cache. Despite the high core count, the E7-8890 v3 has its base frequency set at 2.5 GHz to yield a TDP of 165W. The E7-8891 v3 (165W) and the E7-8893 v3 (140W) drop the core count to ten and four, but raise the base frequency to 2.8 GHz and 3.2 GHz, respectively. The E7-8880L v3 is a low power version, relatively speaking, which will also contains eighteen cores that are clocked at 2.0 GHz. This drops its TDP to 115W while still maintaining 45 MB of L3 cache.

Intel-Xeon-E7-V3_Benchmarks_8S_4S-Enterprise.jpg

Image Credit: WCCFTech

The product stack trickles down from there, but not much further. Just twelve processors are listed in the Xeon E7 segment, which Intel points out in the WCCFTech slides is a significant reduction in SKUs. This suggests that they believe their previous line was too many options for enterprise customers. When dealing with prices in the range of $1,223 - $7,174 USD for bulk orders, it makes sense to offer a little choice to slightly up-sell potential buyers, but too many choices can defeat that purpose. Also, it was a bit humorous to see such an engineering-focused company highlight a reduction of SKUs with a bubble point like it was a technological feature. Not bad, actually quite good as I mentioned above, just a bit funny.

The Xeon E7 v3 is listed as now available, with SKUs ranging from $1223 - $7174 USD.

Source: Intel

AMD Zen Diagram Leaked and Analysis

Subject: Processors | April 27, 2015 - 06:06 PM |
Tagged: Zen, Steamroller, Kaveria, k12, Excavator, carrizo, bulldozer, amd

There are some pretty breathless analysis of a single leaked block diagram that is supposedly from AMD.  This is one of the first indications of what the Zen architecture looks like from a CPU core standpoint.  The block diagram is very simple, but looks in the same style as what we have seen from AMD.  There are some labels, but this is almost a 50,000 foot view of the architecture rather than a slightly clearer 10,000 foot view.

There are a few things we know for sure about Zen.  It is a clean sheet design that moves away from what AMD was pursuing with their Bulldozer family of cores.  Zen gives up CMT for SMT support for handling more threads.  The design has a cluster of four cores sharing 8 MB of L3 cache, with each core having access to 512 KB of L2 cache.  There is a lot of optimism that AMD can kick the trend of falling more and more behind Intel every year with this particular design.  Jim Keller is viewed very positively due to his work at AMD in the K7 through K8 days, as well as what he accomplished at Apple with their ARM based offerings.

zen.jpg

One of the first sites to pick up this diagram wrote quite a bit about what they saw.  There was a lot of talk about, “right off the bat just by looking at the block diagram we can tell that Zen will have substantially higher single threaded performance compared to Excavator and the Bulldozer family.”  There was the assumption that because it had two 256-bit FMACs that it could fuse them to create a single 512 bit AVX product.

These assumptions are pretty silly.  This is a very simple block diagram that answers few very important questions about the architecture.  Yes, it shows 6 int pipelines, but we don’t know how many are address generation vs. execution units.  We don’t know how wide decode is.  We don’t know latency to L2 cache, much less how L3 is connected and shared out.  So just because we see more integer pipelines per core does not automatically mean, “Da, more is better, strong like tractor!”  We don’t know what improvements or simplifications we will see in the schedulers.  There is no mention of the front-end other than Fetch and Decode.  How about Branch Prediction?  What is the latency for the memory controller when addressing external memory?

Essentially, this looks like a simplified way of expressing to analysts that AMD is attempting to retain their per core integer performance while boosting floating point/AVX at a similar level.  Other than that, there is very little that can be gleaned from this simple block diagram.

Other leaks that are interesting concerning Zen are the formats that we will see these products integrated into.  One leak detailed a HPC aimed APU that features 16 Zen cores with 32 MB of L3 cache attached to a very large GPU.  Another leak detailed a server level chip that will support 32 cores and will be seen in 2P systems.  Zen certainly appears to be very flexible, and in ways it reminds me of a much beefier Jaguar type CPU.  My gut feeling is that AMD will get closer to Intel than it has been in years, and perhaps they can catch Intel by surprise with a few extra features.  The reality of the situation is that AMD is far behind and only now are we seeing pure-play foundries start to get even close to Intel in terms of process technology.  AMD is very much at a disadvantage here.

Still, the company needs to release new, competitive products that will refill the company coffers.  The previous quarter’s loss has dug into cash reserves, but AMD is still stable in terms of cash on hand and long term debt.  2015 will see new GPUs, an APU refresh, and the release of the new Carrizo parts.  2016 looks to be the make or break year with Zen and K12.

Edit 2015-04-28:  Thanks to SH STON we have a new slide that has been leaked from the same deck as this one.  This has some interesting info in that AMD may be going away from exclusive cache designs.  Exclusive was a good idea when cache was small and expensive, as data was not replicated through each level of cache (L1 was not replicated in L2 and L2 was not replicated in L3).  Intel has been using inclusive cache since forever, where data is replicated and simpler to handle.  Now it looks like AMD is moving towards inclusive.  This is not necessarily a bad thing as the 512 KB of L2 can easily handle what looks to be 128 KB of L1 and the shared 8 MB of L3 cache can easily handle the 2 MB of L2 data.  Here is the link to that slide.

zen2.jpg

The new slide in question.

Source: AMD

Moore's Law Is Fifty Years Old!

Subject: General Tech, Graphics Cards, Processors | April 19, 2015 - 02:08 PM |
Tagged: moores law, Intel

While he was the director of research and development at Fairchild Semiconductor, Gordon E. Moore predicted that the number of components in an integrated circuits would double every year. Later, this time-step would slow to every two years; you can occasionally hear people talk about eighteen months too, but I am not sure who derived that number. In a few years, he would go on to found Intel with Robert Noyce, where they spend tens of billions of dollars annually to keep up with the prophecy.

Intel-logo.png

It works out for the most part, but we have been running into physical issues over the last few years though. One major issue is that, with our process technology dipping into the single- and low double-digit nanometers, we are running out of physical atoms to manipulate. The distance between silicon atoms in a solid at room temperature is about 0.5nm; a 14nm product has features containing about 28 atoms, give or take a few in rounding error.

Josh has a good editorial that discusses this implication with a focus on GPUs.

It has been a good fifty years since the start of Moore's Law. Humanity has been developing plans for how to cope with the eventual end of silicon lithography process shrinks. We will probably transition to smaller atoms and molecules and later consider alternative technologies like photonic crystals, which routes light in the hundreds of terahertz through a series of waveguides that make up an integrated circuit. Another interesting thought: will these technologies fall in line with Moore's Law in some way?

Source: Tom Merritt

Leaked: Intel Skylake-S Enthusiast Processor and Chipset Details

Subject: Processors | April 15, 2015 - 10:04 PM |
Tagged: Intel, Skylake, skylake-s, lga1151, 100 series

Some slides have leaked out with information about Intel's forthcoming 6th Generation Core processor, code named Skylake. We have known that Skylake was coming, and coming this year, but there have been a lot of questions about enthusiast parts and what that means for DIY builders. The slides were first seen over at WCCFTech.com and show some interesting new information.

skylakepreso1.jpg

Dubbed Skylake-S, the LGA (socketed) processor will use a new derivative with 1151 pins as well as a new set of chipsets, the Intel 100-series. Skylake is built on the same 14nm process technology used with Broadwell but will feature a new microarchitecture for both the IA cores and the graphics systems. Obviously you can read the slide yourself above, but some of the highlights are worth touching on individually. Skylake will support both DDR3L and DDR4 memory systems with the enthusiast grade parts likely the only ones to attempt to push the newer, faster DDR4 speeds.

Enthusiasts will also be glad to know that there are planned 95 watt quad-core SKUs that will support unlocked features and overclocking capability. Intel lists an "enhanced" BCLK overclocking with the term "full range" which likely means there will no longer be a need for straps to 125 MHz, etc. A 95 watt TDP is higher than the 88 watt limit we saw on Haswell processors so there is a chance we might actually witness usable performance gains if Intel can get the clock speeds up and above where they sit today with current generation parts.

The use of DMI 3.0, the connection between the processor and the chipset, sees the first increase in bandwidth in many generations. Rated at 8 GT/s, twice that of the DMI 2.0 interface used on Haswell, should allow for fewer bottlenecks on storage and external PCIe connections coming from the chipset.

skylakepreso2.jpg

The new Intel 100-series chipsets will come in three variants at launch: the Z170, the H170 and the H110. The one we are most concerned with is the Z170 of course as it will be paired wit the higher end 65 watt and 95 watt enthusiast processors. Based on these specs, Skylake will continue to operate with only 16 lanes of PCI Express 3.0 capable of running at 1 x16, 2 x8 or 1 x8 and 2 x4 connections. With either DDR3L or DDR4 you will have a dual-channel memory system.

skylakepreso4.jpg

For storage, the Z170 still has six SATA 6.0 Gb/s ports, moves to 14 USB ports maximum with 10 of them capable of USB 3.0 speeds and it upgrades Intel RST to support PCIe storage drivers. Of note here is that the Intel chipset does not include USB 3.1 capability so motherboard vendors will continue to need an external controller to integrate it. Without a doubt the 100-series chipsets will be able to support booting and compatibility with the new Intel 750-series PCIe SSDs, the current king of the hill.

As for timing, the roadmap lists the Z170 chipset and the Skylake-S processor as a Q3 2015 release. I would normally expect that to line up with Computex in early June but that doesn't appear to be the case based on other information I am getting.

Source: WCCFTech

AMD’s FX-8320E; get in the game for $138?

Subject: Processors | April 7, 2015 - 05:56 PM |
Tagged: amd, FX-8320e

Over at Techgage one of the writers recently updated their system, due to budget constraints they needed to stay in the $600-700 range all told which of course indicates an AMD build.  They chose the $138 FX-8320E for their processor, along with a pair of GTX 760s, the ASUS M5A99FX Pro R2.0, 8GB of DDR3-1866 and with storage, power, cooling and case they managed to keep within the ir budget.  The question remain is if it is powerful enough for reasonable gaming duties such as Borderlands 2.  Read on to see if the recommendation is to go with AMD or the i3-4330 and a low end H97 board.

AMD-FX-Processor-Box-500x535.jpg

"Released this past fall, AMD’s FX-8320E processor promises to deliver a lot of processing power for those on a budget. It sports eight cores, and as a Black Edition, its overclocking capabilities are unrestricted. But is that enough to make this the best go-to budget processor, especially for gamers?"

Here are some more Processor articles from around the web:

Processors

Source: Techgage

Rumor: Intel Is Now Powering Both Surface and Surface Pro

Subject: Processors, Mobile | March 25, 2015 - 09:51 PM |
Tagged: Intel, core m, atom, surface, Surface 2, Windows 8.1, windows 10

The stack of Microsoft tablet devices had high-end Intel Core processors hovering over ARM SoCs, the two separated by a simple “Pro” label (and Windows 8.x versus Windows RT). While the Pro line has been kept reasonably up to date, the lower tier has been stagnant for a while. That is apparently going to change. WinBeta believes that a new, non-Pro Surface will be announced soon, at or before BUILD 2015. Unlike previous Surface models, it will be powered by an x86 processor from Intel, either an Atom or a Core M.

microsoft-surface2.jpg

This also means it will run Windows 8.1.

The article claims, somewhat tongue-in-cheek, that Windows RT is dead. No. But still, the device should be eligible for a Windows 10 upgrade when it launches, unlike the RT-based Surfaces. Whether that is a surprise depends on the direction you view it from. I would find it silly for Microsoft to release a new Surface device, months before an OS update, but design it to be incompatible with it. On the other hand, it would be the first non-Pro Surface to do so. Either way, it was reported.

The “Surface 3”, whatever it will be called, is expected to be a fanless design. VR-Zone expects that it will be similar to the 10.6-inch, 1080p form factor of the Surface 2, but that seems to be their speculation. That is about all that we know thus far.

Source: WinBeta

Ivy Bridge-E versus Haswell-E and the gang

Subject: Processors | March 17, 2015 - 03:20 PM |
Tagged: Ivy Bridge-E, Intel, i7-4970K, i7-4960X, i7-4770k, Haswell-E

TechPowerUp has put together a quick overview of the differences of Intel's current offerings for your reference when purchasing a new machine or considering an upgrade.  The older i7-4770K would run you $310 as compared to $338 for the i7-4790K or $385 for an i7-5820K while the i7-4960X would set you back $1025.  Is it worth upgrading your machine if you have an older Haswell, or going full hog to pick up the $1000 flagship model?  The results are presented in a handy format and while perhaps not an in depth review the results are quite striking, especially the performance while gaming.

91Bq5WlNpSL._SL1500_.jpg

"We review the Haswell-E lineup by pitting all its processors against each other and the Ivy Bridge-E Intel Core i7-4960X, Haswell Refresh Intel Core i7-4970K, and Haswell Intel Core i7-4770K. If you are looking to build a high-end gaming PC, or are looking to upgrade, then look no further: This review will tell you which CPU you will want to get to cover your needs."

Here are some more Processor articles from around the web:

Processors

Source: techPowerUp

New Intel Xeon D Broadwell Processors Aimed at Low Power, High Density Servers

Subject: Editorial, Processors | March 12, 2015 - 08:29 PM |
Tagged: Xeon D, xeon, servers, opinion, microserver, Intel

Intel dealt a blow to AMD and ARM this week with the introduction of the Xeon Processor D Product Family of low power server SoCs. The new Xeon D chips use Intel’s latest 14nm process and top out at 45W. The chips are aimed at low power high density servers for general web hosting, storage clusters, web caches, and networking hardware.

Intel Xeon D Processor.png

Currently, Intel has announced two Xeon D chips, the Xeon D-1540 and Xeon D-1520. Both chips are comprised of two dies inside a single package. The main die uses a 14nm process and holds the CPU cores, L3 cache, DDR3 and DDR4 memory controllers, networking controller, PCI-E 3.0, and USB 3.0 while a secondary die using a larger (but easier to implement) manufacturing process hosts the higher latency I/O that would traditionally sit on the southbridge including SATA, PCI-E 2.0, and USB 2.0.

In all, a fairly typical SoC setup from Intel. The specifics are where things get interesting, however. At the top end, Xeon D offers eight Broadwell-based CPU cores (with Hyper-Threading for 16 total threads) clocked at 2.0 GHz base and 2.5 GHz max all-core Turbo (2.6 GHz on a single core). The cores are slightly more efficient than Haswell, especially in this low power setup. The eight cores can tap into 12MB of L3 cache as well as up to 128GB of registered ECC memory (or 64GB unbuffered and/or SODIMMs) in DDR3 1600 MHz or DDR4 2133 MHz flavors. Xeon D also features 24 PCI-E 3.0 lanes (which can be broken up to as small as six PCI-E 3.0 x4 lanes or in a x16+x8 configuration among others), eight PCI-E 2.0 lanes, two 10GbE connections, six SATA III 6.0 Gbps channels, four USB 3.0 ports, and four USB 2.0 ports.

Intel Xeon D Server Processor Performance.png

All of this hardware is rolled into a part with a 45W TDP. Needless to say, this is a new level of efficiency for Xeons! Intel chose to compare the new chips to its Atom C2000 “Avoton” (Silvermont-based) SoCs which were also aimed at low power servers and related devices. According to the company, Xeon D offers up to 3.4-times the performance and 1.7-times the performance-per-watt of the top end Atom C2750 processor. Keeping in mind that Xeon D uses approximately twice the power as Atom C2000, it is still looking good for Intel since you are getting more than twice the performance and a more power efficient part. Further, while the TDPs are much higher,

Intel has packed Xeon D with a slew of power management technology including Integrated Voltage Regulation (IVR), an energy efficient turbo mode that will analyze whether increased frequencies actually help get work done faster (and if not will reduce turbo to allow extra power to be used elsewhere on the chip or to simply reduce wasted energy), and optional “hardware power management” that allows the processor itself to determine the appropriate power and sleep states independently from the OS.

Being server parts, Xeon D supports ECC, PCI-E Non-Transparent Bridging, memory and PCI-E Checksums, and corrected (errata-free) TSX instructions.

Ars Technica notes that Xeon D is strictly single socket and that Intel has reserved multi-socket servers for its higher end and more expensive Xeons (Haswell-EP). Where does the “high density” I mentioned come from then? Well, by cramming as many Xeon D SoCs on small motherboards with their own RAM and IO into rack mounted cases as possible, of course! It is hard to say just how many Xeon Ds will fit in a 1U, 2U, or even 4U rack mounted system without seeing associated motherboards and networking hardware needed but Xeon D should fare better than Avoton in this case since we are looking at higher bandwidth networking links and more PCI-E lanes, but AMD with SeaMicro’s Freedom Fabric and head start on low power x86 and ARM-based Opteron chip research as well as other ARM-based companies like AppliedMicro (X-Gene) will have a slight density advantage (though the Intel chips will be faster per chip).

Intel Xeon Processor D Product Family Server SoC.png

Which brings me to my final point. Xeon D truly appears like a shot across both ARM and AMD’s bow. It seems like Intel is not content with it’s dominant position in the overall server market and is putting its weight into a move to take over the low power server market as well, a niche that ARM and AMD in particular have been actively pursuing. Intel is not quite to the low power levels that AMD and other ARM-based companies are, but bringing Xeon down to 45W (with Atom-based solutions going upwards performance wise), the Intel juggernaut is closing in and I’m interested to see how it all plays out.

Right now, ARM still has the TDP and customization advantage (where customers can create custom chips and cores to suit their exact needs) and AMD will be able to leverage its GPU expertise by including processor graphics for a leg up on highly multi-threaded GPGPU workloads. On the other hand, Intel has the better manufacturing process and engineering budget. Xeon D seems to be the first step towards going after a market that they have in the past not really focused on.

With Intel pushing its weight around, where will that leave the little guys that I have been rooting for in this low power high density server space?

Source: Intel