(HCW) AMD A10-6790K APU Review and Benchmarks

Subject: General Tech, Processors | December 10, 2013 - 06:56 PM |
Tagged: Richland, amd

AMD has been heavily promoting their Kaveri platform leading up to its January launch. This new generation of parts should slowly replace Richland with faster and HSA-compliant silicon. AMD added a new member of the Richland family on October 29th, however, called the A10-6790K. With a base frequency of 4.1 GHz (turbo to 4.3 GHz) and 384 shader cores clocked at 844 MHz, it has a maximum theoretical compute power of 779 GFLOPs.

hcw-battlefield-4-frametimes-620x418.png

Image Credit: HCW

Carl Nelson of Hardcoreware (HCW) picked one of these APUs up and tested it against a number of metrics (including OpenCL performance) and four similarly priced competitors. Specifically, he found Battlefield 4 playable on low (~35 FPS) at 720p without a discrete graphics solution especially for a home theater PC (HTPC).

Even though better things are on the horizon, you may want to check out his review if only as comparison to what will arrive next month. Who knows, maybe this fits your $120-130 price point.

Source: Hardcoreware

The 25W, four core Xeon E3 1230Lv3

Subject: Processors | December 9, 2013 - 06:23 PM |
Tagged: xeon e3, Intel, haswell, 1230Lv3

Server chips with low power consumption are in style an the Xeon E3-1230Lv3 certainly qualifies at a tiny 25W TDP.  It is a Haswell chip running at a peak speed of 1.8GHz which would be great for a small business or for a home server.  eTeknix compared the performance of this chip to the i7-4770K with a TDP more than three times that of the Xeon which is perhaps a little unfair to the E3 but is a familiar chip to most enthusiasts.  That said the Xeon doesn't fall too far behind in many tests and at $250 it is less expensive to slap into a Z87 motherboard and it will reduce your power bill somewhat.

index.jpg

"Intel’s Xeon E3-1230Lv3 CPU has been a hotly anticipated processor for a wide variety of target audiences – home users, office users, small business users and enterprise users. Today we’ve got an opportunity to put Intel’s enterprise Xeon E3-1230Lv3 CPU to the test in a professional home user or “prosumer” type of environment, by pairing it up with SuperMicro’s server-grade C7Z87-OCE motherboard. The Intel Xeon E3-1230Lv3 is an important CPU because it offers four cores, eight threads, a 1.8GHz base frequency, a 2.8GHz Turbo frequency and 8MB of cache all for a tiny TDP of just 25W."

Here are some more Processor articles from around the web:

Processors

Source: eTeknix

AMD A10-7850K and A10-7700K Kaveri Leaks Including Initial GPU Benchmarks

Subject: General Tech, Graphics Cards, Processors | December 3, 2013 - 04:12 AM |
Tagged: Kaveri, APU, amd

The launch and subsequent availability of Kaveri is scheduled for the CES time frame. The APU unites Steamroller x86 cores with several Graphics Core Next (GCN) cores. The high-end offering, the A10-7850K, is capable of 856 GFLOPs of compute power (most of which is of course from the GPU).

amd-kaveri-slide.png

Image/Leak Credit: Prohardver.hu

We now know about two SKUs: the A10-7850K and the A10-7700K. Both parts are quite similar except that the higher model is given a 200 MHz CPU bump, 3.8 GHz to 4.0 Ghz, and 33% more GPU units, 6 to 8.

But how does this compare? The original source (prohardver.hu) claims that Kaveri will achieve an average 28 FPS in Crysis 3 on low at 1680x1050; this is a 12% increase over Richland. It also achieved an average 53 FPS with Sleeping Dogs on Medium which is 26% more than Richland.

These are healthy increases over the previous generation but do not even account for HSA advantages. I am really curious what will happen if integrated graphics become accessible enough that game developers decide to target it for general compute applications. The reduction in latency (semi-wasted time bouncing memory between compute devices) might open this architecture to where it can really shine.

We will do our best to keep you up to date on this part especially when it launches at CES.

Source: ProHardver

Intel Xeon Phi to get Serious Refresh in 2015?

Subject: General Tech, Graphics Cards, Processors | November 28, 2013 - 03:30 AM |
Tagged: Intel, Xeon Phi, gpgpu

Intel was testing the waters with their Xeon Phi co-processor. Based on the architecture designed for the original Pentium processors, it was released in six products ranging from 57 to 61 cores and 6 to 16GB of RAM. This lead to double precision performance of between 1 and 1.2 TFLOPs. It was fabricated using their 22nm tri-gate technology. All of this was under the Knights Corner initiative.

Intel_Xeon_Phi_Family.jpg

In 2015, Intel plans to have Knights Landing ready for consumption. A modified Silvermont architecture will replace the many simple (basically 15 year-old) cores of the previous generation; up to 72 Silvermont-based cores (each with 4 threads) in fact. It will introduce the AVX-512 instruction set. AVX-512 allows applications to vectorize 8 64-bit (double-precision float or long integer) or 16 32-bit (single-precision float or standard integer) values.

In other words, packing a bunch of related problems into a single instruction.

The most interesting part? Two versions will be offered: Add-In Boards (AIBs) and a standalone CPU. It will not require a host CPU, because of its x86 heritage, if your application is entirely suited for an MIC architecture; unlike a Tesla, it is bootable with existing and common OSes. It can also be paired with standard Xeon processors if you would like a few strong threads with the 288 (72 x 4) the Xeon Phi provides.

And, while I doubt Intel would want to cut anyone else in, VR-Zone notes that this opens the door for AIB partners to make non-reference cards and manage some level of customer support. I'll believe a non-Intel branded AIB only when I see it.

Source: VR-Zone

Components Deals: Amazon Gold Box has Core i7-4770K for $299, Intel 240GB 530 SSD for $149

Subject: General Tech, Processors, Storage | November 19, 2013 - 01:15 PM |
Tagged: i7-4770k, gold box, deals, amazon, 530 series

I don't often post about the Amazon Gold Box deals, but today the company has some great offerings specific to PC enthusiasts and DIY builders that you might want to take advantage of.  Please keep in mind though that these deals are only good today, November 19th!!

The flagship offering is the Intel Core i7-4770K, the company's highest end LGA1150 Haswell processor, is on sale for $299; $60 off the normal MSRP. That is the best price I have seen on that flagship CPU with the exception of in-store offerings from MicroCenters. 

intel4770k.jpg

For those of you on a tighter budget, Amazon has the Core i5-3570K Ivy Bridge processor on sale for $199

Another great price can be had on the Intel 530 Series 240GB SSD that is going for $149; well under the MSRP price. 

intel530.jpg

You can also find good deals on a pair of Sapphire Radeon HD 7970 cards including the OC model with boost for $239 or the Vapor-X model for $289, both after rebates. 

sapphirevaporx.jpg

Here are some other interesting deals, all found on the Gold Box deal page:

And just remember: these deals are only good today, November 19th!!

Source: Amazon

AMD Releases 2014 Mobile APU Details: Beema and Mullins Cut TDPs

Subject: Processors | November 13, 2013 - 05:35 PM |
Tagged: Puma, Mullins, mobile, Jaguar, GCN, beema, apu13, APU, amd, 2014

AMD’s APU13 is all about APUs and their programming, but the hardware we have seen so far has been dominated by the upcoming Kaveri products for FM2+.  It seems that AMD has more up their sleeves for release this next year, and it has somewhat caught me off guard.  The Beema and Mullins based products are being announced today, but we do not have exact details on these products.  The codenames have been around for some time now, but interest has been minimal since they are evolutionary products based on Kabini and Temash APUs that have been available this year.  Little did I know that things would be far more interesting than that.

apu13_01.png

The basis for Beema and Mullins is the Puma core.  This is a highly optimized revision of Jaguar, and in some ways can be considered a new design.  All of the basics in terms of execution units, caches, and memory controllers are the same.  What AMD has done is go through the design with a fine toothed comb and make it far more efficient per clock than what we have seen previously.  This is still a 28 nm part, but the extra attention and love lavished upon it by AMD has resulted in a much more efficient system architecture for the CPU and GPU portions.

The parts will be offered in two and four core configurations.  Beema will span from 10W to 25W configurations.  Mullins will go all the way down to “2W SDP”.  SDP essentially means that while the chip can be theoretically rated higher, it will rarely go above that 2W envelope in the vast majority of situations.  These chips are expected to be around 2X more efficient per clock than the previous Jaguar based products.  This means that at similar clock speeds, Beema and Mullins will pull far less power than that previous gen.  It should also allow some higher clockspeeds at the top end 25W area.

apu13_02.png

These will be some of the first fanless quad cores that AMD will introduce for the tablet market.  Previously we have seen tablets utilize the cut down versions of Temash to hit power targets, but with this redesign it is entirely possible to utilize the fully enabled quad core Mullins.  AMD has not given us specific speeds for these products, but we can guess that they will be around what we see currently, but the chip will just have a lower TDP rating.

AMD is introducing their new security platform based on the ARM Trustzone.  Essentially a small ARM Cortex A5 is integrated in the design and handles the security aspects of this feature.  We were not briefed on how this achieves security, but the slide below gives some of the bullet points of the technology.

apu13_03.png

Since the pure-play foundries will not have a workable 20 nm process for AMD to jump to in a timely manner, AMD had no other choice but to really optimize the Jaguar core to make it more competitive with products from Intel and the ARM partners.  At 28 nm the ARM ecosystem has a power advantage over AMD, while at 22 nm Intel offers similar performance to AMD but with greater power efficiency.

This is a necessary update for AMD as the competition has certainly not slowed down.  AMD is more constrained obviously by the lack of a next-generation process node available for 1H 2014, so a redesign of this magnitude was needed.  The performance per watt metric is very important here, as it promises longer battery life without giving up the performance people received from the previous Kabini/Temash family of APUs.  This design work could be carried over to the next generation of APUs using 20 nm and below, which hopefully will keep AMD competitive with the rest of the market.  Beema and Mullins are interesting looking products that will be shown off at CES 2014.

apu13_04.png

Source: AMD

AMD Kaveri's Fast... But Less Than Expected.

Subject: General Tech, Processors | November 12, 2013 - 06:50 PM |
Tagged: Kaveri, apu13, amd

AMD will deliver its latest round of APUs (Kaveri) on January 14th. These processors, built on a 28nm process, will combine the Steamroller architecture on the CPU with HSA-compliant Graphics Core Next (GCN) cores on the GPU. Together they are expected to bring 856 GFLOPs of computational performance.

AMD-Kaveri.jpg

Thomas Ryan at SemiAccurate, however, remembers that AMD expected over a TeraFLOP.

Of course Kaveri has been a troubled chip for AMD. At this point Kaveri is over a year late and most of that delay is due to a series of internal issues at AMD rather than technical problems. But now with the knowledge that Kaveri missed AMD’s internal performance targets by about 20 percent it’s hard to be very positive about AMD’s next big-core APU.

The problem comes from a reduction in the clock rate AMD expected back in February 2012. Steamroller was expected to reach 4 GHz but that has been slightly reduced to 3.7 GHz; this is obviously a small impact from a compute standpoint (weakened by just under10 GFLOPs). The GPU, on the other hand, was cut from 900MHz down to 720 MHz; its performance was reduced by a whole 25% (Update: 20%. Accidentally divided by 720 instead of 900). Using AMD's formula for calculating FLOP performance, Kaveri's 856 GFLOP rating corresponds to an 18% reduction from the original 1050 GFLOP target.

But, personally, I am still positive about Kaveri.

The introduction of HSA features into mainstream x86 processors has begun. The ability to share memory between the CPU and the GPU could be a big deal, especially for tasks such as AI and physics. AI especially interests me (although I am by no means an expert) because it is a mixture of branching and parallel instructions. The HSA model could, potentially, operate on the data with whichever architecture makes sense. Currently, synchronizing CPU and GPU memory is very costly; you could easily spend most of your processing time budget waiting for memory transfers.

856 GFLOPs is a definite reduction from 1050 GFLOPs. Still, if Kaveri (and APUs going forward) can effectively nullify the latencies involved with GPGPU work, an Intel Ivy Bridge-E Core i7 4960X has an instruction throughput of ~160 GFLOPs.

And before you say it: Yes, I know, Ivy Bridge-E can be paired with fast discrete graphics. This combination is ideal for easily separated tasks such as when the CPU prepares a frame and then a GPU draws it; you get the best of both worlds if both can keep working.

But what if your workload is a horrific mish-mash of back-and-forth serial and parallel? That is where AMD might have an edge.

Source: SemiAccurate

Video: Battlefield 4 Running on AMD A10 Kaveri APU and Image Decoder HSA Acceleration

Subject: Graphics Cards, Processors | November 12, 2013 - 06:10 PM |
Tagged: amd, Kaveri, APU, video, hsa

Yesterday at the AMD APU13 developer conference, the company showed off the upcoming Kaveri APU running Battlefield 4 completely on the integrated graphics.  I was able to push the AMD guys along and get a little more personal demo to share with our readers.  The Kaveri APU had some of its details revealed this week:

  • Quad-core Steamroller x86
  • 512 Stream Processor GPU
  • 856 GFLOPS of theoretical performance
  • 3.7 GHz CPU clock speed, 720 MHz GPU clock speed

AMD wanted to be sure we pointed out in this video that the estimate clock speeds for FLOP performance may not be what the demo system was run at (likely a bit lower).  Also, the version of Battlefield 4 here is the standard retail version and with further improvements from the driver team as the upcoming Mantle API implementation will likely introduce even more performance for the APU.

The game was running at 1920x1080 with MOSTLY medium quality settings (lighting set to low) but the results still looked damn impressive and the frame rates were silky and smooth.  Considering this is running on a desktop with integrated processor graphics, the game play experience is simply unmatched.  

Memory in the system was running at 2133 MHz.

The second demo looks at the image decoding acceleration that AMD is going to enable with Kaveri APUs upon release with a driver.  Essentially, as the demonstration shows in the video, AMD is overwriting the integrated Windows JPG decompression algorithm with a new one that utilizes HSA to accelerate on both the x86 and SIMD (GPU) portions of the silicon.  For the most strenuous demo that used 22 MP images saw a 100% increase in performance compared to the Kaveri CPU cores alone.

ARM TechCon 2013: Altera To Produce ARMv8 Chips on Intel 14nm Fabs

Subject: Processors, Mobile | October 29, 2013 - 12:24 PM |
Tagged: techcon, Intel, arm techcon, arm, Altera, 14nm

In February of this year Intel and Altera announced that they would be partnering to build Altera FPGAs using the upcoming Intel 14nm tri-gate process technology.  The deal was important for the industry as it marked one of the first times Intel has shared its process technology with another processor company.  Seen as the company's most valuable asset, the decision to outsource work in the Intel fabrication facilities could have drastic ramifications for Intel's computing divisions and the industry as a whole.  This seems to back up the speculation that Intel is having a hard time keeping their Fabs at anywhere near 100% utilization with only in-house designs.

Today though, news is coming out that Altera is going to be included ARM-based processing cores, specifically those based on the ARMv8 64-bit architecture.  Starting in 2014 Altera's high-end Stratix 10 FPGA that uses four ARM Cortex-A53 cores will be produced by Intel fabs.

The deal may give Intel pause about its outsourcing strategy. To date the chip giant has experimented with offering its leading-edge fab processes as foundry services to a handful of chip designers, Altera being one of its largest planned customers to date.

Altera believes that by combing the ARMv8 A53 cores and Intel's 14nm tri-gate transistors they will be able to provide FPGA performance that is "two times the core performance" of current high-end 28nm options.

alteraarm.JPG

While this news might upset some people internally at Intel's architecture divisions, the news couldn't be better for ARM.  Intel is universally recognized as being the process technology leader, generally a full process node ahead of the competition from TSMC and GlobalFoundries.  I already learned yesterday that many of ARM's partners are skipping the 20nm technology from non-Intel foundries and instead are looking towards the 14/16nm FinFET transitions coming in late 2014. 

ARM has been working with essentially every major foundry in the business EXCEPT Intel and many viewed Intel's chances of taking over the mobile/tablet/phone space as dependent on its process technology advantage.  But if Intel continues to open up its facilities to the highest bidders, even if those customers are building ARM-based designs, then it could drastically improve the outlook for ARM's many partners.

UPDATE (7:57pm): After further talks with various parties there are a few clarifications that I wanted to make sure were added to our story.  First, Altera's FPGAs are primarly focused on the markets of communication, industrial, military, etc.  They are not really used as application processors and thus are not going to directly compete with Intel's processors in the phone/tablet space.  It remains to be seen if Intel will open its foundries to a directly competing product but for now this announcement regarding the upcoming Stratix 10 FPGA on Intel's 14nm tri-gate is an interesting progression.

Source: EETimes

Intel 2014 Desktop "Roadmap": Broadwell-K Late 2014?

Subject: General Tech, Processors | October 28, 2013 - 07:21 PM |
Tagged: Intel, Haswell-E, Broadwell-K, Broadwell

Ivy Bridge-E was confirmed for this holiday season and Haswell-E was proclaimed to follow in Holiday 2014 bringing good tidings of comfort and joy (and DDR4). Broadwell, the Haswell architecture transitioned to a 14nm process technology, was expected to be delayed until at least 2015 because it was not on any roadmap before that.

broadwell-k.png

Image credit: VR-Zone China

Until recently when something called "Broadwell-K" popped up slated for late Holiday 2014.

VR-Zone China, the site which broke this story (machine translated), cautiously assumes Broadwell-K signifies the platform will first arrive for the mainstream enthusiast. This would align with Intel's current "K" branding of unlocked processors and make sense to be introduced for the Consumer product segment without a Business offering.

If true, which seems likely, the question then becomes why. So let us speculate!

One possible (but almost definitely incorrect) reason is that Intel was able to get the overclocking challenges at 22nm solved and, thus, they want to build hype over what the enthusiasts can accomplish. Josh Walrath, our monitor of the fabrication industry's pulse at PC Perspective, did not bother entertaining the idea. His experiences suggest 14nm and 22nm are "not so different".

But, in the same discussion, Ryan wondered if Intel just could not get power low enough to release anything besides the upper mainstream parts. Rather than delay further, release the parts as they can fit in whatever TDP their market demands. Josh believes that is "as good [of a theory] as any". This also seems like a very reasonable possibility to me, too.

Two other theories: yields are sufficient for the "K" market (but nowhere else) or that Intel could be throwing a bone to the mid-range (lower than Haswell-E) enthusiast by letting them lead. It could also be almost any combination of the above or more.

Or, of course, Broadwell-K could refer to something completely arbitrary. At this point, no-one knows but anyone can guess.

So then, your turn? Comments await.

Source: VR-Zone

ARM TechCon 2013 Will Showcase the Internet of Things

Subject: Processors, Mobile, Shows and Expos | October 26, 2013 - 11:13 AM |
Tagged: techcon, iot, internet of things, arm

This year at the Santa Clara Convention Center ARM will host TechCon, a gathering of partners, customers, and engineers with the goal of collaboration and connection.  While I will attending as an outside observer to see what this collection of innovators is creating, there will be sessions and tracks for chip designers, system implementation engineers and software developers.

techcon1.jpg

Areas of interest will include consumer products, enterprise products and of course, the Internet of Things, the latest terminology for a completely connected infrastructure of devices.  ARM has designed tracks for interested parties in chip design, data security, mobile, networking, server, software and quite a few more. 

Of direct interest to PC Perspective and our readers will be the continued release of information about the Cortex-A12, the upcoming mainstream processor core from ARM that will address the smartphone and tablet markets.  We will also get some time with ARM engineers to talk about the coming migration of the market to 64-bit.  Because of the release of the Apple A7 SoC that integrated 64-bit and ARMv8 architecture earlier this year, it is definitely going to be the most extensively discussed topic. If you have specific questions you'd like us to bring to the folks at ARM, as well as its partners, please leave me a note in the comments below and I'll be sure it is addressed!

Cortex-A12_600px.png

I am also hearing some rumblings of a new ARM developed Mali graphics product that will increase efficiency and support newer graphics APIs as well. 

Even if you cannot attend the event in Santa Clara, you should definitely pay attention for the news and products that are announced and shown at ARM TechCon as they are going to be a critical part of the mobile ecosystem in the near, and distant, future.  As a first time attendee myself, I am incredibly excited about what we'll find and learn next week!

Imagination Technologies Unleashes Warrior MIPS P5600 CPU Core Aimed at Embedded and Mobile Devices

Subject: Editorial, General Tech, Networking, Processors, Mobile | October 19, 2013 - 01:45 AM |
Tagged: SoC, p5600, MIPS, imagination

Imagination Technologies, a company known for its PowerVR graphics IP, has unleashed its first Warrior P-series MIPS CPU core. The new MIPS core is called the P5600 and is a 32-bit core based on the MIPS Release 5 ISA (Instruction Set Architecture).

The P5600 CPU core can perform 128-bit SIMD computations, provide hardware accelerated virtualization, and access up to a 1TB of memory via virtual addressing. While the MIPS 5 ISA provides for 64-bit calculations, the P5600 core is 32-bit only and does not include the extra 64-bit portions of the ISA.

Imagination Technologies Warrior MIPS P5600 CPU Core.png

The MIPS P5600 core can scale up to 2GHz in clockspeed when used in chips built on TSMC's 28nm HPM manufacturing process (according to Imagination Technologies). Further, the Warrior P5600  core can be used in processors and SoCs. As many as six CPU cores can be combined and managed by a coherence manager and given access to up to 8MB of shared L2 cache. Imagination Technologies is aiming processors containing the P5600 cores at mobile devices, networking appliances (routers, hardware firewalls, switches, et al), and micro-servers.

MIPS-P5600-Coherent-multicore-system.png

A configuration of multiple P5600 cores with L2 cache.

I first saw a story on the P5600 over at the Tech Report, and found it interesting that Imagination Technologies was developing a MIPS processor aimed at mobile devices. It does make sense to see a MIPS CPU from the company as it owns the MIPS intellectual property. Also, a CPU core is a logical step for a company with a large graphics IP and GPU portfolio. Developing its own MIPS CPU core would allow it to put together an SoC with its own CPU and GPU components. With that said, I found it interesting that the P5600 CPU core was being aimed at the mobile space, where ARM processors currently dominate. ARM is working to increase performance while Intel is working to bring its powerhouse x86 architecture to the ultra low power mobile space. Needless to say, it is a highly competitive market and Imagination Technologies new CPU core is sure to have a difficult time establishing itself in that space of consumer smartphone and tablet SoCs. Fortunately, mobile chips are not the only processors Imagination Technologies is aiming the P5600 at. It is also offering up the MIPS Series 5 compatible core for use in processors powering networking equipment and very low power servers and business appliances where the MIPS architecture is more commonplace.

In any event, I'm interested to see what else IT has in store for its MIPS IP and where the Warrior series goes from here!

More information on the MIPS 5600 core can be found here.

The little Atom that could

Subject: Processors | October 1, 2013 - 02:49 PM |
Tagged: Intel, atom, Bay Trail, Z3000, silvermont

Silvermont has a lot of work cut out for it to get out from the shadow of its poorly performing predecessors.  The new Z3000 is much more than just a low powered chip, it is Intel's first SoC aimed at taking market share from ARM.  It has been out for almost a month now and so it is worth rounding up a few of the reviews to remind you of Intel's plans in the low powered mobile market as well as the new modular server market.  The Tech Report benchmarked this chip running both Win8.1 and Android OSes against a variety of products powered by ARM, Snapdragon and Tegra as well as against a Core-i3 and an A4-5000 from AMD.  Check out the results in their full review.

If you missed it the first time around you can catch Ryan's coverage here.

TR_die-shot.jpg

"Intel has just pulled back the curtain on the Atom Z3000 series, based on the "Bay Trail" SoC. Equipped with the potent new "Silvermont" CPU architecture, this chip is intended to challenge ARM for supremacy in tablets and convertibles. We have a first look at its architecture and performance."

Here are some more Processor articles from around the web:

Processors

Intel Developer Forum (IDF) 2013 Keynote Live Blog Day 2

Subject: Processors, Shows and Expos | September 10, 2013 - 02:47 PM |
Tagged: idf, idf 2013, Intel, keynote, live blog

We are preparing for the second day of keynotes at IDF so sign up below to get a reminder for our live blog! After the first keynote saw the introduction of Intel Quark SoCs, showcases of the first 14nm Broadwell processor and a 22nm LTE smartphone, day 2 could be even more exciting!

icon.jpg

The event starts at 9am PT / 12pm ET on Wednesday the 11th!

 

 

 

IDF 2013: Announcing Quark SoCs that are even smaller than Atom

Subject: Processors, Shows and Expos | September 10, 2013 - 02:31 PM |
Tagged: quark, Intel, idf 2013, idf

In a very interesting and surprising announcement at the first Intel Developer Forum keynote this morning, Intel's new CEO Brian Krzanich showed the first samples of Quark, a new SoC design that will enter into smaller devices that even Atom can reach.

quark1.jpg

Quark is the family name for the new line of SoCs that are open, synthesizable and support with industry standard software.  An open SoC is simply one that will allow third-party IP integration with the processor cores while a synthesizable one can be moved and migrated to other production facilities as well.  This opens up Intel to take Quark outside of its own fabrication facilities (though Krzanich said they would prefer not during Q&A) and allow partners to more easily integrate their own silicon with the Quark DNA.  Intel had previously announced that Atom would be able to integrate with third-party IP but that seems to have been put on the back burner in favor of this.

Quark will not be an open core design in the same way that ARM's core can be, but instead Intel is opening up the interface fabric for direct connection to computing resources. 

quark2.jpg

The Quark SoC is square in the middle

Krzanich showed off the chip on stage that is 1/5 the size of Atom and 1/10 the power levels of Atom (though I am not sure if we are referring to Clover Trail or Bay Trail for the comparison).  That puts it in a class of products that only ARM-based designs have been able to reach until now and Intel displayed both reference systems and wearable designs. 

UPDATE: Intel later clarified with me that the "1/5 size, 1/10 power" is for a Quark core against an Atom core at 22nm.  It doesn't refer to the entire SoC package.

quark3.jpg

Intel hasn't yet told us what microarchitecture Quark is based on but if I were a betting man I would posit that it is related to the Silvermont designs we are looking at on Bay Trail but with a cut down feature set.  Using any other existing design from Intel would result in higher than desired power consumption and die size levels but it could also be another ground up architecture as well.

I'll be poking around IDF for more information on Quark going forward but for now, it appears that Intel is firmly planting itself on a collision course with ARM and Qualcomm. 

UPDATE 1: I did get some more information from Intel on the Quark SoC.  It will be the first product based on the 14nm manufacturing process and is a 32-bit, single core, single thread chip based on a "Pentium ISA compatible CPU core."  This confirms that it is an x86 processor though not exactly what CPU core it is based on.  More soon!

Intel Developer Forum (IDF) 2013 Keynote Live Blog

Subject: Processors, Shows and Expos | September 10, 2013 - 11:02 AM |
Tagged: live blog, keynote, Intel, idf 2013, idf

UPDATE: You can see the replay of our live blog below from Day 1 of IDF but be sure you head over to the Day 2 Live Blog page to set a reminder!  Join us on Wednesday at 9am PT / 12pm ET!!

 

Today is the beginning of the 2013 Intel Developer Forum in San Francisco!  Join me at 9am PT for the first of three live blogs of the main Intel keynotes where we will learn what direction Intel is taking on many fronts!

icon.jpg

 

 

IFA 2013: ASUS X102BA Ultraportable Powered by AMD Temash A4-1200

Subject: Processors, Mobile | September 4, 2013 - 11:32 AM |
Tagged: Temash, ifa 2013, asus, APU, amd, a4-1200

The hits just keep coming from ASUS this morning with the announcement of a new ultraportable notebook with the ambiguous name of X102BA. Though the name might not be catchy the device itself is more interesting because of the hardware that is powering it, specifically an AMD Temash A4-1200 APU. 

x1021.jpg

This marks one of the few highly visible systems being powered by the AMD Temash architecture and I will be very curious to its reception.  The APU itself is a dual-core part that runs at 1.0 GHz with integrated Radeon HD 8180 graphics that is more than enough for a modest Windows 8 working environment.  There is a quad-core variant of Temash available but ASUS decided to go with the dual-core option.  If you need more information on the new architecture that AMD created for Kabini and Temash (based on Jaguar CPU cores and GCN GPU cores) then you should see our coverage from their announcement back in May.

The rest of the specifications are a bit more tame, including a 1366x768 10.1-in 10-point multi-touch screen, USB 3.0, 802.11n WIFI, bundled Microsoft Office Home and Student 2013 and a touted 2-second resume time. 

x1022.jpg

Even though the battery life is only listed at 5 hours, the 2.4 pound weight makes the X102BA a very portable machine.  Plus you can get it in Hot Pink!

Click here to see the full ASUS X102BA press release!!

Source: ASUS

Core i7-4960X Ivy Bridge-E Overclocking Update: ASUS P9X79 Pro Results

Subject: Motherboards, Processors | September 3, 2013 - 06:19 PM |
Tagged: x79, P9X79 PRO, Ivy Bridge-E, Intel, i7-4960X, asus

If you read our Intel Core i7-4960X Ivy Bridge-E review posted earlier today, you likely saw our overclocking results.  After publication I got contacted by ASUS asking why we didn't attempt to overclock our CPU sample with one of their updated motherboards.  In truth we were unable to get any of the pre-release UEFI firmware updates to apply to our P9X79 Pro or Rampage IV Extreme motherboards. 

asusoc3.jpg

Move on to this afternoon and we were finally able to patch up the v1.02 of the P9X79 Pro and tossed in the same Core i7-4960X sample we used in our initial story.  What were the results?

asusoc1.jpg

Click to Enlarge

As you can see above we were able to overclock the processor to 4.413 GHz at UEFI set voltage of only 1.40v.  Previously we were only reaching a 4.3 GHz overclock and even had to up the voltage a bit higher.

I was hoping that I would be able to reach the 45x multiplier but alas it wasn't meant to be.  I will keep messing with our 4960X to see how much further can push it.

Not your everyday Ivy Bridge-E review

Subject: Processors | September 3, 2013 - 05:43 PM |
Tagged: 4960x, core i7-4960x, i7-4960X, Intel, Ivy Bridge-E, lga 2011, x79

You won't see the release of Intel's new processor as being described as "fascinating as whatever was happening with that rancher dude in Wyoming with the chickens and the laser pointer", you will have to head to The Tech Report to enjoy that type of comment.  Nor will you finally learn that 5% of people who buy this chip "Need more knobs for extreme overclocking."; unfortunately he is probably right on the money as there are very few reasons to upgrade from Sandy Bridge-E to IVB-E.  Stick your tongue in your cheek and read the usual benchmarks delivered a few percentage points faster than the last generation.

The truly masochistic can immediately follow that up with Ryan's review here.

models.png

"The NSA intercepted our review of the Core i7-4960X before we even had it completed. Let's listen in and see what they made of it."

Here are some more Processor articles from around the web:

Processors

Ivy Bridge E arrives with a murmur

Subject: Processors | August 30, 2013 - 04:28 PM |
Tagged: x79, lga 2011, Ivy Bridge-E, i7-4960X

The i7-4960X has arrived and the fact that it is compatible with current LGA2011 boards might be the biggest hurdle for the Intel sales team.  [H]ard|OCP tested it on a brand new ASUS X79 Deluxe and while it did prove to be a bit faster than a 3930K, or for that matter a 4770K, as well as using a little less power at full load it just does not offer enough of a jump to make swapping your SB-E chip out.  Idle power is impressively low and if you are on an older LGA 1366 board you will certainly notice a jump, so there will certainly be a market for this generation of Intel chip.

H_Monry.jpg

"We debut Intel's next $1000 Extreme Desktop processor, the Core i7-4960X, this time with Ivy Bridge architecture and a couple of extra cores thrown in for good measure. It is a beast of a CPU for those that can actually harness its power and bandwidth, but how much better is it than Sandy Bridge-E and Haswell at the same clocks?"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP