Dell leaks specs for Latitude 10, Windows 8 and Intel Clover Trail powered tablet

Subject: Processors, Mobile | May 29, 2012 - 11:33 AM |
Tagged: z2670, windows 8, dell, clover trail, atom

In a leaked slide posted by Neowin.net, details of Dell's upcoming Latitude 10 tablet are coming to light, including hardware specifications like the Intel Atom Z2670 "Clover Trail" SoC. 

dell_win8_tablet.jpg

This 10.1-in Windows 8 based tablet will include a 1366x768 display with a capacitive multi-touch screen and an optional stylus accessory.  Weighing in at just over 1.5 pounds, the Latitude 10 is just slightly heavier than the latest generation of iPad (1.46 pounds). 

Intel's upcoming Atom processor, the Z2670, will be at the core of the design and will be based on the "Clover Trail" design, a slightly faster and updated version of "Medfield" we have seen implemented on mobile phones early in 2012.  With dual-cores capable of HyperThreading, and the ability to enter into "Burst Mode" which offers "quick bursts of extra performance when called upon", the Atom Z2670 should be capable of presenting a reasonable Windows 8 experience.  

Other specifications include 2 GB of DDR2-800 lower power memory, up to a 128 GB SSD, 2 and 4 cell swappable batteries and front plus rear facing cameras.  

With Computex 2012 right around the corner in Taipei, Taiwan, we expect to see quite a few more tablets and hybrid machines based on Windows 8 including Intel Atom-powered devices as well as ARM-based devices running Windows 8 RT. 

Source: Neowin.net

Green is the new blue for Intel -- pledges more eco friendly

Subject: General Tech, Processors, Mobile | May 24, 2012 - 06:01 PM |
Tagged: Intel

Intel has released a report about their environmental efforts in terms of manufacturing efficiency, waste, and the efficiency of their products themselves. Their 2020 mobile and data center product line is expected to use 25-fold less power than their 2010 product line. Intel is hoping to use less water and consume 1.4 TWh less energy between 2012 and 2015 in their manufacturing with no chemical waste to landfill by 2020.

It is not easy been green.

… But, especially now, Intel can afford to try.

The chip manufacturer has set some goals for themselves to decrease their impact on the environment. These plans were published in their 2011 Corporate Responsibility Report (pdf), released last week. The plan highlights goals extending out as far as 2020.

It would seem that for Intel foresight is also 2020.

11-intel-green.png

Yes, those puns were terrible, I admit it.

One of the forefront issues raised is alterations to their supply chain. Their raw materials have been addressed -- not just for eco-friendliness -- but also for human rights violations. By the end of 2012 Intel intends to validate that all tantalum would be “conflict-free” with the other three minerals verified by the end of 2013.

On the topic of environmental impact Intel is also intending on reducing their electrical and water usage at their manufacturing plants. A total of 1.4 TWh of energy is expected to be reduced from 2012 through 2015. Intel is also lauding their solar initiatives although they fell short of committing to any specific future endeavors in clean energy in this report.

Lastly, Intel claims that their mobile and data center products will consume 25-fold less power than their 2010 counterparts. Obviously such a statement falls more under gloating than a vow to promote sustainability but it is respectable none-the-less.

AMD will not chase Intel making "needlessly powerful" CPUs

Subject: Editorial, General Tech, Graphics Cards, Processors | May 19, 2012 - 04:52 PM |
Tagged: ultrabook, trinity, cloud computing, cloud, amd

Bloomberg Businessweek reports AMD CEO Rory Read claims that his company will produce chips which are suited for consumer needs and not to crunch larger and larger bundles of information. They also like eating Intel’s bacon -- the question: is it from a pig or a turkey?

Read believes there is “enough processing power on every laptop on the planet today”.

I disagree.

The argument revolves around the shift to the cloud, as usual. It is very alluring to shift focus from the instrument to the data itself. More enticing: discussing how the instruments change to suit that need; this is especially true if you develop instruments and yearn to shift anyway.

amd-new.png

Don’t question the bacon…

AMD has been trusting that their processors will be good enough and their products will differentiate in other ways such as with graphics capabilities which they claim will be more important for cloud services. AMD hopes that their newer laptops will steal some bacon from Intel and their ultrabook initiative.

The main problem with the cloud is that it is mostly something that people feel that they want rather than actually do. They believe they want their content controlled by a company for them until it becomes inaccessible temporarily or permanently. They believe they want their information accessible in online services but then freak out about the privacy implications of it.

The public appeal of the cloud is that it lets you feel as though you can focus on the content rather than the medium. The problem is that you do not have fewer distractions from your content -- just different ones -- and they rear their head once or twice in isolation of each other. You experience a privacy concern here and an incompatibility or licensing issue there. For some problems and for some people it makes more sense to control your own data. It will continue to be important to serve that market.

And if crunching ends up being necessary for the future it looks like Intel will be a little lonely at the top.

This A-10 can't kill tanks but it does beat a Bulldozer

Subject: Processors | May 16, 2012 - 02:29 PM |
Tagged: trinity, radeon, igp, gpu, APU, amd. A10-4600M

AMD's A10-4600M APU has finally arrived, showing off an enhanced Piledriver core and a new Northern Islands based graphics core.  This is a big step up from Llano in terms of general processing power but not a huge improvement over Bulldozer chips, though the raised clock speed does help it in general tasks.  Unfortunately the AMD still chip lags far behind the performance of Intel's mobile i5 processors and while the graphics are certainly more powerful on Trinity they still aren't up to an impressive level of performance.  The Tech Report liked the high end A10-4600M but think that Trinity's low power chips are really going to shine in inexpensive ultraportable machines.

You can also check out Matt's review of Llano in a reference laptop from AMD for more information.

a-10-warthog-bobby-kro.jpg

"AMD has pulled the curtains back on Trinity, its next-generation APU, which features new Piledriver CPU cores and Northern Islands-derived integrated graphics. Join us as we outline Trinity's architecture and run it through a whole host of benchmarks, from old staples to OpenCL-accelerated apps and "inside the second" gaming tests."

Here are some more Processor articles from around the web:

Processors

 

AMD Launches 2nd-Generation A-Series APU

Subject: Processors | May 15, 2012 - 02:28 PM |
Tagged: amd, APU, trinity

AMD today announced the widely anticipated launch of its 2nd-Generation AMD A-Series Accelerated Processing Units (APUs) for mainstream and ultrathin notebooks, All-in-One and traditional desktops, home theater PCs and embedded designs.

apumodels.png

The 2nd-Generation A-Series APU, codenamed “Trinity”, is a grounds-up improved design over the previous generation, enabling a best-in-class PC mobility, entertainment, and gaming experience. New features of the product design include:

  • Double the performance per watt of the previous generation;
  • The AMD HD Media Accelerator with a unique set of technologies designed to optimize video quality available with premium and Internet video content, and accelerate video file conversion;
  • An increase in CPU performance of up to 29 percent with higher processor speeds thanks to the next-generation AMD “Piledriver” CPU core with 3rd-Generation AMD Turbo Core technology, where power is dynamically shifted between the CPU and GPU depending on application needs, effectively providing a more responsive experience that can boost CPU frequencies to up to 3.2 GHz;
  • AMD Radeon HD 7000 Series graphics for an increase of graphics performance up to 56% over the previous generation. Combined, the CPU and GPU cores deliver more than 700 gigaflops of computing performance – several times more than the fastest x86 CPUs – to boost performance of hundreds of applications;
  • Up to 12 hours of battery life through CPU and GPU power enhancements, with clear battery life leadership in notebook form factors.

“The latest OEM notebooks, ultrathins, All-in-Ones and desktops based on the new AMD A-Series APU enable the best video and gaming experiences, highly responsive performance with AMD Turbo CORE, and accelerate an ever-increasing range of productivity and multimedia applications -- in sleek, stylish designs at price points that make sense,” said Chris Cloran, corporate vice president and General Manager, AMD Client Business Unit. “Our 2nd-Generation AMD A-Series APU is a major step forward in every performance and power dimension, allowing users to enjoy a stunning experience without having to give up the things that matter to them most. This experience doesn’t stop at mainstream notebooks. It carries over into affordable ultrathin form factors featuring the latest in AMD Radeon graphics.”

The Growing AMD Accelerated Application Ecosystem
The developer ecosystem continues to gravitate to the unmatched level of compute and unique processing capabilities of the APU as more than 100 applications and games are now accelerated by AMD APUs. The 2nd-Generation AMD A-Series APU gives users superior Web-based video experience thanks to plug-ins for Google Chrome, Firefox and Internet Explorer 9 that make it easy for consumers to turn on AMD Steady Video technology. Recent applications that have been optimized for use on AMD A-Series APUs include Adobe Photoshop CS6, WinZip 16.5 and VLC Media Player. AMD A-Series APUs are also well-positioned to take advantage of the upcoming transition to the Windows 8 operating system.

“We are excited for the introduction of the 2nd-Generation AMD A-Series APU and are confident it will continue the great work Microsoft and AMD have done together on the A-Series APU,” said Aidan Marcuss, senior director, Windows Business Planning, Microsoft Corp. “We look forward to seeing the A-Series APU in action with Windows 8 to deliver a great user experience across a variety of hardware.”

For developers who want to engage in the industry’s move toward heterogeneous computing, the upcoming AMD Fusion12 Developer Summit will offer them a unique opportunity to enhance their knowledge base. More information on AFDS can be found here.

Unmatched Mobility
With more than 12 hours of ‘resting’ battery life, AMD is now an industry leader in notebook battery-life performance. The 2nd-Generation AMD A-Series APU delivers increased levels of performance, while consuming half the power as its predecessor.

These gains can be attributed to the new power-optimized “Piledriver” CPU core, as well as to AMD Start Now technology, which is designed to maximize system responsiveness by quickly entering and exiting low power states. With AMD Start Now, the computer resumes from sleep mode in as few as two seconds and boots to the desktop in as few as 10 seconds.

In ultrathin form factors, AMD enables an uncompromised visual experience thanks to a power-efficient and premium AMD Radeon graphics engine. Consumers can expect to see ultrathin notebooks based on dual-core 17-watt and quad-core 25-watt AMD A-Series APUs. These products will be easily identifiable by aluminum-styled VISION Technology stickers at a range of competitive price points.

Best-in-class Entertainment
As more and more people turn to their computers as the hub for their entertainment, the visual aspect of computing becomes ever more important. To enhance these capabilities, AMD created the AMD HD Media Accelerator – a unique set of technologies that enable the best video quality on a PC. Key features of the HD Media Accelerator include:

  • AMD Perfect Picture HD – An image, video processing and display technology that automatically makes images and video better with color vibrancy adjustments, edge enhancement, noise reduction and dynamic contrast fixes;
  • AMD Steady Video Technology – A technology that enables smooth playback of jittery video content with a single button click thanks to plug-ins for popular Web browsers and multimedia applications;
  • AMD Quick Stream Technology – A new technology that prioritizes video streaming on PC systems for a smooth, virtually uninterrupted video stream; True HD video chat with up to four people at once;
  • AMD Video Converter – A video compression engine for fast conversion and sharing of media files across multiple formats and devices; Full decode support for H.264, MPEG-2, VC-1, MVC, DivX and WMV.

Gaming Leadership
The 2nd-Generation AMD A-Series APU builds on AMD’s legacy of gaming leadership with an increase in graphics performance of up to 56% over the previous generation and support for:
AMD Eyefinity Technology – For the first time, this immersive technology is available from an APU without the need for a discrete graphics card Performance-leading DirectX 11 graphics architecture and 1080p gaming a life-like level of detail; AMD Radeon dual graphics support that delivers a performance boost of up to 75 percent when adding a discrete graphics card to the APU.11 The AMD Radeon dual graphics option also offers support for DirectX 9 for older game titles, and uses new AMD CrossFire Technology Profiles for easier updates.

Source: AMD

AMD Releasing Mobile Trinity APUs In May

Subject: Processors | May 8, 2012 - 05:30 AM |
Tagged: ultrathins, trinity, piledriver, mobile, APU, amd

Last week we detailed the changes and improvements in AMD’s upcoming Trinity Accelerated Processing Units (APU). Today, DigiTimes has confirmed that Trinity will be released later this month. The only catch is that the company is only releasing the mobile Trinity chips in May. The higher end, and higher TDP, parts will not be released until August 2012.

IMG_7517.JPG

A Trinity APU die next to a USB flash drive

According to their sources, AMD will be pricing the mobile Trinity chips very aggressively. They will offer a cheaper alternative to OEMs as AMD based ultrathins compared to an Ivy Bridge based ultabrook notebook. The low power Trinity chips will have vastly superior GPU execution units, though Ivy Bridge may retain the CPU performance crown. Both chips are able to sip voltage and have low TDPs so it will be interesting to see the results of battery life tests once the chips and notebooks are released and are in the hands of reviewers.

Trinity desktop parts are scheduled for release in August, including the A10-5800K, A10-5700, A8-5600K, and A8-5500. They are also planning lower end A6 and A4 series Trinity APUs.

Beyond Trinity, their sources have indicated that AMD will release very low power Brazos 2.0 processors for ultrathins and Windows 8 tablets that have 18W TDPs in June 2012. Vishera–Piledriver architecture, AM3+ socket–FX series desktop CPUs (no iGPU) will be released sometime in the third quarter of this year (Q3 2012). The FX and Brazos processors include the FX-8350, FX-6300, FX-4320, and the E2-1800 and E1-1200 respectively.

While AMD may not have the lowest manufacturing process, are seemingly dropping employees like flies, and had a huge financial loss due to buying themselves out of GlobalFoundries they are still hanging in there and delivering competitive products for the low to mid-range markets.

Source: DigiTimes

Trinity Improvements Include Updated Piledriver Cores and VLIW4 GPUs

Subject: Processors | May 4, 2012 - 02:11 PM |
Tagged: trinity, piledriver, llnao, fm2, APU, AMD A series

EXP Review has managed to get their hands on a set of AMD slides containing information on one of the company’s upcoming processor lines. The Llano successor, known as Trinity, is a new APU due out later this year that is said to bring increases in performance thanks to several architectural enhancements.

IMG_7517.JPG

A Trinity APU die sitting next to a USB flash drive

Llano is AMD’s currently available Accelerated Processing Unit, or APU. The chips combine updated “Stars” mobile Phenom II CPU cores and Radeon 6000 series graphics cores into a single package. Further, the APUs contain a PCI-E 2.0 controller, integrated memory controller, and UVD3 hardware video decoding units. Some models also support AMD’s Turbo Core and Hybrid Graphics Technology which allow them to automatically boost CPU clockspeeds when lower GPU usage leaves TDP headroom, and to pair with a discrete Radeon HD 6450, 6570, or 6670 GPU in a Crossfire-like configuration. Built on a 32nm silicon on insulator (SOI) manufacturing process by GlobalFoundries, the APUs employ 1.45 billion transistors and have a die size of 228mm2 for the desktop versions. Desktop parts have TDPs of 65 watts or 100 watts depending on the particular chip and connect to the motherboards using the FM1 socket (which was a new socket for AMD, it has 905 contacts). There are both desktop and mobile Llano parts, though they are essentially the same chips. The mobile parts are scaled down desktop Llano chips that run at lower clockspeeds, top out DDR3 support at 1600MHz (versus DDR3 1866MHz on the desktop parts), have lower TDPs of either 35W or 45W, and use a slightly different socket (FS1).

In our review, and what many other users noted, is that Llano’s CPU performance really left something to be desired. Fortunately for AMD, the GPU portion of the chip delivered on performance and made the APU desirable for certain niches. The low power chips had a place in home theater PCs (HTPCs), cheap desktops, and even budget gaming rigs to an extent. Still, the CPU performance really held Llano back in terms of popularity and adoption among enthusiasts.

Llano APU in action during overclocking and gaming tests.

The upcoming Trinity processors bring quite a few enhancements to the table, foremost of which is a revamped CPU part that ditches the old Phenom II processor cores in favor of updated Piledriver architecture CPU modules. The move to the Piledriver x86 cores promises an increase in IPC, leakage reduction, CAC reduction, and increased clockspeeds according to the leaked slides, but the most important change is the increased performance per clock numbers. The Trinity APUs are set to replace the A8–or performance series of–Llano APUs with quad core Trinity processors that utilize two Piledriver modules that each share 2MB cache for 4MB of total L2 cache. In that respect, Trinity will be similar to Llano in that it does not employ any L3 cache that is shared between the CPU and GPU cores. Interestingly, that may mean that using higher clocked RAM can improve performance on Trinity just as it did with Llano. If true, that would make Trinity’s improved DDR3 support–up to DDR3 2133MHz– all the better. On the GPU side of things, Trinity moves to a “Northern Islands” VLIW4 architecture with up to 384 stream processing units. Although the GPU area is physically smaller, it is said to be more efficient than the GPU cores in Llano APUs. The new GPU core is DirectX 11 and OpenCL 1.1 compliant. Also, it includes an updated hardware tessellator engine and hardware encoding unit (AMD Accelerated Video Converter).

Trinity_Layout.jpg

Trinity will continue to offer 65W and 100W TDPs as well as a 35W part. The TDPs are the same as those in Llano, but AMD has managed to lower the voltages needed to run Trinity out of the box. Also, AMD is claiming the new Trinity chips will sip power at idle–as low as 1.08 watts.

Trinity also ratchets up the automatic overclocking with Turbo Core 3 support which can boost the CPU clockspeed up to 19% or the GPU clockspeed up to 20% above stock clocks. Even better, the APU is able to allocate power to either the GPU or CPU depending on which area needs the boost and how much TDP headroom the chip has when doing certain tasks. For example, AMD shows that the A10-4600M APU can downclock the GPU from the default clockspeed of 685MHz to 496MHz, allowing the x86 Piledriver cores to achieve up to a 900MHz overclock at a clockspeed of 3.2GHz. Alternatively, when the GPU is needed, it can run at 685MHz while the CPU sits at 2.3GHz. They are likely not able to push the GPU much further as any more reductions in CPU speeds would need to be much bigger than any accompanying GPU increases. And at that point, the GPU would likely become bottlenecked and the system would be starved of too much CPU power anyway.

Trinity_Turbo_Core_3.jpg

The Trinity APUs continue to be based on GlobalFoundries’ 32nm SOI manufacturing process, but this time the chips are slightly larger with a die size of 246mm^2. Although the APU is wholly larger than Llano, they actually have fewer transistors at 1.303 billion versus the 1.45 billion in Llano. Although that may seem like a step in the wrong direction, the new CPU modules and GPU cores are much more efficient than those in Llano so it should all balance out and Trinity should come out on top despite the lower transistor count. The Trinity APUs will also feature an improved instruction set that includes AVX, AVX1.1, FMA3, AES, and F16C which should help the CPU in certain tasks.

Trinity_2.jpg

Overall, Trinity is looking like an improved part versus Llano, especially in the CPU department. Although AMD’s numbers should be taken with more than a grain of salt, they are claiming 26% better desktop system performance as a result of the CPU overhaul. Granted, Bulldozer was not a CPU powerhouse itself when compared to the competition, but it is–at least on paper–a good design. When paired with a relatively good GPU, as is the case of Trinity, the Piledriver [architecture based] (a refined version of the Bulldozer architecture with some under-the-hood tweaks) cores should at the least not hold the GPU back, and at best make the CPU processor performance good enough to make the Trinity APU all the more desirable to an even wider range of potential buyers. Pricing of the new APUs is still up in the air, but they are set to release later this month if a certain leak is to be believed.

I think that we can expect to see an all around better chip with Trinity, though pricing will be the ultimate factor in determining how popular it is. I suspect that Intel will still carry the CPU crown, but if the price is right, AMD can sell a lot of Trinity chips to builders that only need decent CPUs to support good integrated GPU cores in systems where the GPU is more important. I am anxiously awaiting reviews of the new Trinity chips and hoping that AMD continues to have successful chips with their line of APUs.

More images of the leaked slides can be found here. Also, on a somewhat related note, it looks like many of the previous leaks and information that we reported on a while ago was correct.

Source: EXPReview

Getting hot and bothered by Ivy Bridge

Subject: Processors | May 2, 2012 - 04:14 PM |
Tagged: Ivy Bridge, Intel, i7-3770k

Anyone who has been keeping up with the reviews coming out which try overclocking Intel's new Ivy Bridge processor will be familiar with the large amount of power required to hit high frequencies.  While the voltages required to overclock Ivy Bridge and its predecessor Sandy Bridge are very similar, Ivy Bridge's stock voltage is lower so the change is greater for Ivy Bridge.  That larger increase could be one cause of the higher heat that Ivy Bridge generates.  Another theory is that the heatspreader could be a cause as Intel used thermal paste in the design as opposed to the fluxless solder present on SandyB, however other tests have shown that this does not seem to be the case.  The Tech Report has gathered together the current facts on this hot topic, so you can check out the numbers for yourself right here.

burning_ivy.jpg

"Folks across the web have reported some eye-poppingly high temperatures for their overclocked Ivy Bridge processors, leading to some tough questions about the causes. Does Ivy Bridge truly run hotter than its predecessor, Sandy Bridge, and if so, why? We checked into it, and the answers were surprising, to say the least. Have a look."

Here are some more Processor articles from around the web:

Processors

 

See, Ivy Bridge really was about to be released!

Subject: Processors | April 23, 2012 - 12:41 PM |
Tagged: Z77, Ivy Bridge, Intel, i7-3770k, i5-3570, 3770k, 3570, 22nm

Intel's latest die shrink and architecture refinement, aka their "Tick", has arrived in the form of Ivy Bridge.  This CPU is actually only one third CPU, a third devoted to Intel's HD4000 graphics core, and the final third comprised of a shared L3 cache, memory controller and other IO devices.  [H]ard|OCP did an almost direct comparison between Sandy Bridge and Ivy Bridge, with the 2600K having the same amount of cores as the 3770K and only lags behind by 100MHz in raw speed.  The overall performance increases and new features that this new architecture were targeted more at the mainstream user than the enthusiast in [H]'s opinion but if you are building a new machine and aren't going for overclocking records then they wholeheartedly recommend Ivy Bridge.

You can catch Ryan's full review right here though you cannot yet buy it.

H_test.png

"The new Ivy Bridge processor has already been well covered across the Internet due to leaks of Intel parts into review sites' hands. So at this point there is little to tell in all honesty. But today we work to tell you what you most likely already know; Ivy Bridge looks to be a very solid product but offers little in the way of an upgrade from Sandy Bridge."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

ASUS Demonstrates Z77 Motherboard Features at PC Perspective

Subject: Motherboards, Processors, Chipsets | April 23, 2012 - 12:05 PM |
Tagged: Z77, Ivy Bridge, Intel, asus, 3770k

Last week our good friends at ASUS stopped by the PC Perspective offices to bring along their entire new lineup of Z77 motherboards and show off the changes and new features being offered.  At the time, there we were something we couldn't show you including our overclocking demonstration as it was using the brand new Intel Ivy Bridge processor.  Not only can we now show you that but we have broken up the demo portion of the video in quicker, bite-sized segments. 

Overclocking

JJ Guerrero shows us the basics of overclocking Ivy Bridge both from the updated UEFI and the AI Suite II software.

 

WiDi on the Desktop

Did you know that desktop PCs using the correct Intel wireless controllers will be able to support Wireless Display technology?  

More videos after the break!!

ASUS and Z77 Platform Live Review: We Want Your Questions!

Subject: Motherboards, Processors | April 14, 2012 - 01:26 PM |
Tagged: Z77, video, live review, Ivy Bridge, asus

In case you haven't noticed, there are Z77 motherboards for sale ahead of the launch of Intel's 3rd generation Core processor.  In line with the release of this new CPU, our friends at ASUS are stopping by the PC Perspective offices to give our readers a chance to see the company's entire Z77 lineup and their impressive new feature set demonstrated and explained on camera.

You will hear about features like Wi-Fi GO!, Digi+ Power Control, SupremeFX III audio technology, GameFirst networking technology, the mPCIe Combo Card, Fan Xpert 2 software and a whole lot more!  Stay tuned for our full Ivy Bridge processor and launch review!!

asusz77.png

We also want to use this opportunity to solicit questions from our readers and fans that they might have about the Intel Z77 chipset, the Ivy Bridge processor and the new line of ASUS Z77 motherboards.  You submit these questions in one of several ways:

  1. Leave a comment on this news post.
     
  2. Send me a questions via Twitter, to @ryanshrout.
     
  3. Leave a question on our Facebook page, http://facebook.com/pcper

To make things better, on launch day, we'll be giving away a few ASUS Z77 motherboards as well so be sure you submit your questions SOON!  We are recording the content for this on Sunday, April 15th, so hurry!!

PC Perspective Live Review Recap: Z77 Motherboard Roundup

Subject: Motherboards, Processors, Chipsets | April 13, 2012 - 11:37 PM |
Tagged: Z77, video, msi, live review, Intel, gigabyte, ECS, asus

A PC Perspective Live Review Recap is a recorded version of a previously live streamed event from http://pcper.com/live.  If you couldn't make the original air time, or simply want to re-watch, the on-demand version is provided below!

Z77 chipset based motherboards are already available and on the market and while we can't share performance or details on the Ivy Bridge processor yet, we can show off and discuss the Z77 chipset and motherboards.  In our Live Review we did a quick unboxing and preview of several models including:

  • MSI Z77A-GD65 - $169
  • Gigabyte Z77X-UD5H - $189
  • Intel DZ77GA-70K - $239
  • ASUS P8Z77-V Deluxe - $274
  • ECS Z77H2-AX (Non Golden Model - $164)

NVIDIA urges you to program better now, not CPU -- later.

Subject: Editorial, General Tech, Graphics Cards, Processors | April 4, 2012 - 04:13 AM |
Tagged: nvidia, Intel, Knight's Corner, gpgpu

NVIDIA steals Intel’s lunch… analogy. In the process they claim that optimizing your application for Intel’s upcoming many-core hardware is not free of effort, and that effort is similar to what is required to develop on what NVIDIA already has available.

A few months ago, Intel published an article on their software blog to urge developers to look to the future without relying on the future when they design their applications. The crux of Intel’s argument states that regardless of how efficient Intel makes their processors, there is still responsibility on your part to create efficient code.

nvidiainteltf2.jpg

There’s always that one, in the back of the class…

NVIDIA, never a company to be afraid to make a statement, used Intel’s analogy to alert developers to optimize for many-core architectures.

The hope that unmodified HPC applications will work well on MIC with just a recompile is not really credible, nor is talking about ease of programming without consideration of performance.

There is no free lunch. Programmers will need to put in some effort to structure their applications for hybrid architectures. But that work will pay off handsomely for today’s, and especially tomorrow’s, HPC systems.

It remains to be seen how Intel MIC will perform when it eventually arrives. But why wait? Better to get ahead of the game by starting down the hybrid multicore path now.

NVIDIA thinks that Intel was correct: there would be no free lunch for developers, why not purchase a plate at NVIDIA’s table? Who knows, after the appetizer you might want to stay around.

You cannot simply allow your program to execute on Many Integrated Core (MIC) hardware and expect it to do so well. The goal is not to simply implement on new hardware -- it is to perform efficiently while utilizing the advantages of everything that is available. It will always be up to the developer to set up their application in the appropriate way.

Your advantage will be to understand the pros and cons of massive parallelism. NVIDIA, AMD, and now Intel have labored to create a variety of architectures to suit this aspiration; software developers must labor in a similar way on their end.

Source: NVIDIA Blogs

How efficiently do Intel and AMD's latest architectures handle virtualization on Ubuntu?

Subject: Processors | April 3, 2012 - 12:43 PM |
Tagged: virtualization, ubuntu 12.04, Sandy Bridge E, Intel, FX 8150, Core i7 3960X, bulldozer, amd

Phoronix is taking the latest Ubuntu release and testing the performance on AMD's FX 8150 against Intel's Core-i7 3960X to see their relative performance in a virtual environment.   Both machines had issues, Xen had critical issues which prevented it from running on the Bulldozer and ASUS motherboard system, while the Sandy Bridge chip had issues with Virtualbox.  The testing was not so much a comparison of the performance difference between the two chips as it is a test of efficiency of these processors running tasks when virtualized.  As both chips averaged 90%+ of base performance when virtualized you can see that both architectures have come a long way in this particular usage.

Also, keep your eyes out for a CPU review from Josh which should be arriving soon.

phoronixbuckle.jpg

"With the upcoming availability of Ubuntu 12.04 "Precise Pangolin" being a Long-Term Support (LTS) release that will be quickly making its way into many enterprise environments, here's a look at the virtualization performance of this popular Linux distribution. In particular, being looked at is the Linux virtualization performance of KVM, Xen, and Oracle VirtualBox compared to bare metal when using Intel Sandy Bridge Extreme and AMD Bulldozer hardware."

Here are some more Processor articles from around the web:

Processors

 

Source: Phoronix

Intel Ivy Bridge Processors To Launch March 23 2012

Subject: Processors | March 19, 2012 - 06:33 PM |
Tagged: Ivy Bridge, Intel, cpu, 22nm

Jeremy posted earlier that Guru3D managed to spot a list of Ivy Bridge processors on Intel's site before getting taken down; however, they did not indicate any specific release dates. A recent article over at TechARP today did mention two dates that are allegedly going to be the launch date and release date for Intel's latest Ivy Bridge 22nm processors.

According to the article, Intel will launch their Ivy Bridge CPUs on Friday March 23, 2012, and then the actual release date (when hardware will be available) will be April 29, 2012.

Among the new processors are Intel's standard TDP parts at 77 Watts and low voltage parts with 65 Watt TDPs. Of the standard voltage parts, the "K" series Ivy Bridge CPUs will feature Intel's newest HD 4000 processor graphics and unlocked multipliers. All the nitty-gritty details including clock speeds and core counts are shown in the chart below. The HD 2500 GPU will is the chip that the remaining processors use.

Model Cores / Threads Clock Speed / Turbo Boost (GHz) L3 Cache Processor Graphics TDP Launch Price ($USD)
 i7-3770K  4 / 8  3.5 / 3.9   8 MB  HD 4000  77 W  $332
 i7-3770  4 / 8  3.4 / 3.9  8 MB  HD 4000  77  W  $294
 i5-3570K  4 / 4  3.4 / 3.8  6 MB  HD 4000  77 W  $225
 i5-3570  4 / 4  3.4 / 3.8  6 MB  HD 2500  77 W  $215
 i5-3550  4 / 4  3.3 / 3.7  6 MB  HD 2500  77 W  $205
 i5-3470  4 / 4  3.2 / 3.6  6 MB  HD 2500  77 W  NA
 i5-3450  4 / 4  3.1 / 3.5  6 MB  HD 2500  77 W  $184
 i5-3330  4 / 4  3.0 / 3.2  6 MB  HD 2500  77 W  NA

 

Further, Intel's low voltage Ivy Bridge processors on the desktop feature clock speeds ranging from 2.7 GHz to 3.1 GHz and between 2 and four cores. Of these CPUs, only the top end Intel Core i7-3770T and i7-3770S along with the Core i5-3470T processors will include Intel's Hyper-Threading technology. Also, only the two top end low voltage parts and the Intel Core i5-3475S Ivy Bridge CPU will use Intel's new HD 4000 processor graphics. The remaining parts will use the HD 2500 GPU. The chart below lists the current desktop lineup of low voltage parts including price, core count, and clock speeds.

Model Cores / Threads Clock Speed / Turbo Boost (GHz) L3 Cache Processor Graphics TDP Launch Price ($USD)
 i7-3770S   4 / 8  3.1 / 3.9  8 MB  HD 4000  65 W  $294
 i7-3770T  4 / 8  2.5 / 3.7  8 MB  HD 4000  65 W  $294
 i5-3570S  4 / 4  3.1 / 3.8  6 MB  HD 2500  65 W  $205
 i5-3570T  4 / 4  2.3 / 3.3  6 MB  HD 2500  65 W  $205
 i5-3550S  4 / 4  3.0 / 3.7  6 MB  HD 2500  65 W  $205
 i5-3475S  4 / 4  2.9 / 3.6  6 MB  HD 4000  65 W  NA
 i5-3470S  4 / 4  2.9 / 3.6  3 MB  HD 2500  65 W  NA
 i5-3470T  2 / 4  2.9 / 3.6  3 MB  HD 2500  65 W  $184
 i5-3450S  4 / 4  2.8 / 3.5  6 MB  HD 2500  65 W  $184
 i5-3330S  4 / 4  2.7 / 3.2  6 MB  HD 2500  65 W  NA

 

More Ivy Bridge information on Ivy Bridge's 22nm tri-gate transistors  and a preview of the Intel Core i7-3770K is available here and here respectively.  Jeremy also tracked down an image of the above charts here.

Source: TechARP

Three Intel architectures; one speed

Subject: Processors | March 19, 2012 - 06:05 PM |
Tagged: Ivy Bridge, sandy bridge, sandy bridge-e, i7-3770K (ES), i7-2600K, i7-3960x

VR-Zone took a processor from each of Intel's last three architectures, clocked them all to 4.7GHz and started benchmarking.  By clocking them all the same you get to see a better comparison of the performance of the various architectures, although the motherboard chipset does introduce a variable into the performance results.  As well, the Ivy Bridge Core i7-3770K is an engineering sample and so may not perfectly reflect the performance of the final retail product.  Drop by to see how these chips compare in synthetic benchmarks.

VR_15202.jpeg

"Intel's Core i7-3770K (ES) vs i7-2600K vs i7-3960X, nuff said! We have also included a brief USB 3.0 controller shootout inside, involving the new Z77 (Panther Point) Native USB implementation and other popular solutions."

Here are some more Processor articles from around the web:

Processors

 

Source: VR-Zone

ARM Cortex-MO+ Lowest Power Processor Yet At 9µA/MHz

Subject: Processors | March 14, 2012 - 06:21 AM |
Tagged: RISC, embedded systems, cortex-m0+, cortex-m, arm, 32-bit

ARM has recently announced a new 32 bit processor for embedded systems that sips power and is one of the lowest power designs yet. This new ARM processor is a new entrant to the Cortex M lineup and has been labeled the ARM Cortex-MO+. The chip features a full 32-bit RISC instruction set and is manufactured using the older, and low cost, 90nm process.

Cortex-M.jpg

The magic happens when we look at the power draw, and according to ARM it will sip power at a mere 9µA (9 microamps) per Megahertz (MHz). It can further run any code designed for (existing) Cortex-M series processor including the Cortex-M3 and Cortex-M4. The new Cortex-M0+ is intended to be used in embedded systems and as microcontroller applications controlling larger machinery.

There is no word yet on pricing or availability; however, support has been promised by the Keil Microcontroller Development Kit and third part software such as Code Red, Micruim, and SEGGER. Freescale and NXP Semiconductor further have been named licensees of the technology thus far. In the case of NXP Semiconductor, they plan to replace existing 8 bit microcontrollers with the ARM Cortex-MO+ in devices such as their UPS units, active cabling, and touchscreens. Freescale, on the other hand, plans to develop their own version of the Cortex-MO+ in the form of the Kinetis L series processor. They will further use the low power chip to operate appliances, portable medical systems, and lighting (among others).

Source: Bit-Tech

Intel in the Cloud with Ray-traces

Subject: General Tech, Graphics Cards, Processors, Mobile | March 8, 2012 - 04:02 AM |
Tagged: ray tracing, tablet, tablets, knight's ferry, Intel

Intel looks to bring ray-tracing from their Many Integrated Core (Intel MIC) architecture to your tablet… by remotely streaming from a server loaded with one or more Knight’s Ferry cards.

The anticipation of ray-tracing engulfed almost the entirety of 3D video gaming history. The reasonable support of ray-tracing is very seductive for games as it enables easier access to effects such as global illumination, reflections, and so forth. Ray-tracing is well deserved of its status as a buzzword.

intel-ray.jpg

Render yourself in what Knight’s Ferry delivered… with scaling linearly and ray-traced Wolfenstein

Screenshot from Intel Blogs.

Obviously Intel would love to make headway into the graphics market. In the past Intel has struggled to put forth an acceptable offering for graphics. It is my personal belief that Intel did not take graphics seriously when they were content selling cheap GPUs to be packed in with PCs. While the short term easy money flowed in, the industry slipped far enough ahead of them that they could not just easily pounce back into contention with a single huge R&D check.

Intel obviously cares about graphics now, and has been relentless at their research into the field. Their CPUs are far ahead of any competition in terms of serial performance -- and power consumption is getting plenty of attention itself.

Intel has long ago acknowledged the importance of massively parallel computing but was never quite able to bring products like Larabee against anything the companies they once ignored could retaliate with. This brings us back to ray-tracing: what is the ultimate advantage of ray-tracing?

 

Ray-tracing is a dead simple algorithm.

 

A ray-trace renderer is programmed very simply and elegantly. Effects are often added directly and without much approximation necessary. No hacking around is required in the numerous caveats within graphics APIs in order to get a functional render on screen. If you can keep throwing enough coal on the fire, it will burn without much effort -- so to speak. Intel just needs to put a fast enough processor behind it, and away they go.

Throughout the article, Daniel Pohl has in fact discussed numerous enhancements that they have made to their ray-tracing engine to improve performance. One of the most interesting improvements is their approach to antialiasing. If the rays from two neighboring pixels strike different meshes or strike the same mesh at the point of a sharp change in direction, denoted by color, between pixels then they are flagged for supersampling. The combination of that shortcut with MLAA will also be explored by Intel at some point.

intel-41914.png

A little behind-the-scenes trickery...

Screenshot from Intel Blogs.

Intel claims that they were able to achieve 20-30 FPS at 1024x600 resolutions streaming from a server with a single Knight’s Ferry card installed to an Intel Atom-based tablet. They were able to scale to within a couple percent of theoretical 8x performance with 8 Knight’s Ferry cards installed.

I very much dislike trusting my content to online streaming services as I am an art nut. I value the preservation of content which just is not possible if you are only able to access it through some remote third party -- can you guess my stance on DRM? That aside, I understand that Intel and others will regularly find ways to push content to where there just should not be enough computational horsepower to accept it.

Ray-tracing might be Intel’s attempt to circumvent all of the years of research that they ignored with conventional real-time rendering technologies. Either way, gaming engines are going the way of simpler rendering algorithms as GPUs become more generalized and less reliant on fixed-function hardware assigned to some arbitrary DirectX or OpenGL specification.

Intel just hopes that they can have a compelling product at that destination whenever the rest of the industry arrives.

Source: Intel Blog

Somebody got a dual E5-2600 system

Subject: Processors | March 6, 2012 - 03:54 PM |
Tagged: xeon E5-2600, Sandy Bridge-EP, Romley, Grizzly Pass, Bighorn Peak

Somehow SemiAccurate got their hands on an Intel R2000 Romley system, featuring a pair of E5-2600 running on a S2600GZ 2S board, in a 2U rackmount case.   The performance impressed them as they had to create artificial loads to even try to stress the machine.  That wasn't all that is impressive about this new platform; as it is designed as a server platform energy savings during low usage times is a key factor for administrators.  Romley goes far beyond reducing frequency and power consumption when idle and actually has 16 power savings profiles which offers control far beyond what has been possible previously.  As well there are large benefits to moving the PCIe controller onto the die, which you can read all about at SemiAccurate.

SemiAccurates_present.jpg

"To give you an idea on how good it is, SemiAccurate spent the last few weeks testing the Intel R2000 (Bighorn Peak) 2U platform based on the S2600GZ (Grizzly Pass) 2S Romley board, and it quickly became obvious we could not stress it with any real workload, only artificial workloads would make this beast sweat. I could not find a way to stress both the memory subsystem and the CPUs at once. To make matters worse, none of this touched the most important modern bottleneck, the network and I/O. Tests didn’t stress the platform evenly, what used to be system tests became subsystem tests, and were obviously the compute equivalent of makework."

Here are some more Processor articles from around the web:

Processors

 

Source: SemiAccurate

Intel Announces New Xeon Processor to Power the Cloud

Subject: Processors | March 6, 2012 - 02:26 PM |
Tagged: xeon E5-2600, xeon e5, xeon, Sandy Bridge E, lga2011, Intel

XeonE5.png

SANTA CLARA, Calif., March 6, 2012 – Addressing the incredible growth of data traffic in the cloud, Intel Corporation announced the record-breaking Intel Xeon processor E5-2600 product family. These new processors deliver leadership performance, best data center performance per watt, breakthrough I/O innovation and trusted hardware security features to enable IT to scale. These processors are not only at the heart of servers and workstations, but will also power the next generation of storage and communication systems from leading vendors around the world.

Forecasts call for 15 billion connected devices and over 3 billion connected users by 2015. The amount of global data center IP traffic is forecasted to grow by 33 percent annually through 2015, surpassing 4.8 zetabytes per year, more than 3 times the amount in 2011. At these levels, each connected user will generate more than 4GB of data traffic every day – the equivalent of a 4-hour HD movie. This will increase the amount of data that needs to be stored by almost 50 percent per year. ­ In order to scale to meet this growth, the worldwide number of cloud servers is expected to more than triple by 2015.

“The growth in cloud computing and connected devices is transforming the way businesses benefit from IT products and services,” said Diane Bryant, Intel vice president and general manager of the Datacenter and Connected Systems Group. “For businesses to capitalize on these innovations, the industry must address unprecedented demand for efficient, secure and high-performing datacenter infrastructure. The Intel Xeon processor E5-2600 product family is designed to address these challenges by offering unparalleled, balanced performance across compute, storage and network, while reducing operating costs.” The key requirements to enable IT to scale are performance, energy efficiency, I/O bandwidth and security. With the best combination of performance, built-in capabilities and cost-effectiveness, the new Intel Xeon processor E5-2600 product families are designed to address these requirements, and become the heart of the next-generation data center powering servers, storage and communication systems.

Leadership Performance with Best Data Center Performance per Watt
Supporting up to eight cores per processor and up to 768GB of system memory, the Intel Xeon processor E5-2600 product family increases performance by up to 80 percent, compared to the previous-generation Intel Xeon processor 5600 series. The family also supports Intel Advanced Vector Extension (Intel AVX) that increases the performance on compute-intensive applications such as financial analysis, media content creation and high performance computing up to 2 times.

Additional built-in technologies such as Intel Turbo Boost Technology 2.0, Intel Hyper-Threading Technology and Intel Virtualization Technology provide IT with flexible capabilities to increase the performance of their infrastructure dynamically. These performance advances have led the Intel Xeon processor E5-2600 product family to capture 1510 new dual socket x86 world records.

Modern data centers must improve the raw performance they deliver, but also do so efficiently by reducing power consumption and operating costs. The Intel Xeon processor E5-2600 product family continue Intel’s focus on reducing total cost of ownership by improving energy efficient performance more than 50 percent as measured by SPECpower_ssj 2008 compared to the previous generation Intel Xeon processor 5600 series. These processors offer support for tools to monitor and control power usage such as Intel Node Manager and Intel Data Center Manager, which provide accurate, real-time power and thermal data to system management consoles. In addition, Intel’s leadership performance allows IT managers to meet their growing demands while optimizing software license and capital costs.

Sandy-Bridge_EP_7_p.jpg

I/O Innovation and Network Capabilities
With the unprecedented growth in data traffic it is essential that systems not only improve computational abilities, but also enable data to flow faster to support data-hungry applications and increase the bandwidth within the data center. The Intel Xeon processor E5-2600 product family meets these needs with Intel Integrated I/O (Intel IIO) and Intel Data Direct I/O (Intel DDIO). Intel DDIO allows Intel Ethernet controllers and adapters to route I/O traffic directly to processor cache, reducing trips to system memory reducing power consumption and I/O latency. The Intel Xeon processor E5-2600 product family is also the first server processors to integrate the I/O controller supporting PCI Express 3.0 directly into the microprocessor. This integration reduces latency up to 30 percent11 compared to prior generations and with PCI Express 3.0 can up to triple the movement of data into and out of the processor.

The high-performance processing power along with Intel Integrated I/O and advanced storage features such as PCIe non-transparent bridging and asynchronous DRAM refresh, makes the Intel Xeon processor E5-2600 product family also an ideal choice for storage and communications solutions.

Increasing bandwidth demands driven by server virtualization and data and storage network consolidation have led to strong growth in 10 Gigabit Ethernet deployments, with adapter port shipments exceeding 1 million units in each quarter of 2011. Today’s announcement of the Intel Ethernet Controller X540 demonstrates Intel’s commitment to driving 10 Gigabit Ethernet to the mainstream by reducing implementation costs. This industry-first single-chip 10GBASE-T solution is designed for low-cost, low-power LAN on motherboard (LOM) and includes flexible I/O Virtualization and Unified networking support at no additional cost.

Trusted Security
The Intel Xeon processor E5-2600 product family reaffirms Intel’s commitment to providing a more secure hardware foundation for today’s data centers. Intel Advanced Encryption Standard New Instruction (Intel AES-NI14) helps systems to quickly encrypt and decrypt data running over a range of applications and transactions. Intel Trusted Execution Technology (Intel TXT15) creates a trusted foundation to reduce the infrastructure exposure to malicious attacks. These features in partnership with leading software applications will help IT protect their data centers against attack and scale to meet the demands of their customers.

Extensive Industry Support
Starting today, system manufacturers from around the world are expected to announce hundreds of Intel Xeon processor E5 family-based platforms. These manufacturers include Acer, Appro, Asus, Bull, Cisco, Dell, Fujitsu, HP, Hitachi, Huawei, IBM, Inspur, Lenovo, NEC, Oracle, Quanta, SGI, Sugon, Supermicro and Unisys.

price.png

Source: Intel