Sony teased a few more details about its upcoming PlayStation 4 console at the Games Developer's Conference earlier this week. While the basic specifications have not changed since the original announcement, we now know more about the X86 console hardware.

The PS4 itself is powered by an AMD Jaguar CPU with eight physical cores and eight threads. Each core gets 32 KB L1 I-cache and D-cache. Further, each group of four physical cores shares 2 MB of L2 cache, for 4MB total L2. The processor is capable of Out of Order Execution, as are AMDs other processor offerings. The console also reportedly features 8GB of GDDR5 memory that is shared by the CPU and GPU. It offers 176 GB/s of bandwidth, and is a step above the PS3 which did not use a unified memory design. The system will also sport a faster GPU rated at 1.843 TFLOPS, and clocked at 800MHz. The PS3 will have a high-capacity hard drive and a new Blu-ray drive that is up to 3-times faster. Interestingly, the console also has a co-processor that allows the system to process the video streaming features and allow the Remote Play game streaming to the PlayStation Vita at its native resolution of 960×554.

The PlayStation Eye has also been upgraded with the PS4 to include 2 cameras, four microphones, and a 3-axis accelerometer. The Eye cameras have an 85-degree field of view, and can record video at 1280×800 at 60 Hz and 12 bits per pixel or 640×480 and 120Hz. The new PS4 Eye is a noteworthy upgrade to the current generation model which is limited to either 640×480 pixels at 60Hz or 320×240 pixels at 120Hz. The extra resolution should allow developers to be more accurate. The DualShock 4 controllers sport a light-bar that can be tracked by the new Eye camera, for example. The light-bar on the controllers uses an RGB LED that changes to blue, red, pink, or green for players 1-4 respectively.

Speaking of the new DualShock 4, Sony has reportedly ditched the analog face buttons and D-pad for digital buttons. With the DS3 and the PS3, the analog face buttons and D-pad came in handy with racing games, but otherwise they are not likely to be missed. The controllers will now charge even when the console is in standby mode, and the L2 and R2 triggers are more resistant to accidental pressure. The analog sticks have been slightly modified and feature a reduced dead zone. The touchpad, which is a completely new feature for the DualShock lineup, is capable of tracking 2 points at a resolution of 1920×900–which is pretty good.

While Sony has still not revealed what the actual PS4 console will look like, most of the internals are now officially known. It will be interesting to see just where Sony prices the new console, and where game developers are able to take it. Using a DX11.1+ feature set, developers are able to use many of the same tools used to program PC titles but also have additional debugging tools and low level access to the hardware. A new low level API below DirectX, but above the driver level gives developers deeper access to the shader pipeline. I'm curious to see how PC ports will turn out, with the consoles now running X86 hardware, I'm hoping that the usual fare of bugs common to ported titles from consoles to PCs will decrease–a gamer can dream, right?

Read more about the upcoming PlayStation 4 (PS4) at PC Perspective.