Podcast #369 - Fable Legends DX12 Benchmark, Apple A9 SoC, Intel P3608 SSD, and more!

Subject: General Tech | October 1, 2015 - 02:17 PM |
Tagged: podcast, video, fable legends, dx12, apple, A9, TSMC, Samsung, 14nm, 16nm, Intel, P3608, NVMe, logitech, g410, TKL, nvidia, geforce now, qualcomm, snapdragon 820

PC Perspective Podcast #369 - 10/01/2015

Join us this week as we discuss the Fable Legends DX12 Benchmark, Apple A9 SoC, Intel P3608 SSD, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Allyn Malventano

Program length: 1:42:35

  1. Week in Review:
  2. 0:54:10 This episode of PC Perspective is brought to you by…Zumper, the quick and easy way to find your next apartment or home rental. To get started and to find your new home go to http://zumper.com/PCP
  3. News item of interest:
  4. Hardware/Software Picks of the Week:
  5. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Apple Dual Sources A9 SOCs with TSMC and Samsung: Some Extra Thoughts

Subject: Processors | September 30, 2015 - 09:55 PM |
Tagged: TSMC, Samsung, FinFET, apple, A9, 16 nm, 14 nm

So the other day the nice folks over at Chipworks got word that Apple was in fact sourcing their A9 SOC at both TSMC and Samsung.  This is really interesting news on multiple fronts.  From the information gleaned the two parts are the APL0898 (Samsung fabbed) and the APL1022 (TSMC).

These process technologies have been in the news quite a bit.  As we well know, it has been a hard time for any foundry to go under 28 nm in an effective way if your name is not Intel.  Even Intel has had some pretty hefty issues with their march to sub 32 nm parts, but they have the resources and financial ability to push through a lot of these hurdles.  One of the bigger problems that affected the foundries was the idea that they could push back FinFETs beyond what they were initially planning.  The idea was to hit 22/20 nm and use planar transistors and push development back to 16/14 nm for FinFET technology.

apple_a9.jpg

The Chipworks graphic that explains the differences between Samsung's and TSMC's A9 products.

There were many reasons why this did not work in an effective way for the majority of products that the foundries were looking to service with a 22/20 nm planar process.  Yes, there were many parts that were fabricated using these nodes, but none of them were higher power/higher performance parts that typically garner headlines.  No CPUs, no GPUs, and only a handful of lower power SOCs (most notably Apple's A8, which was around 89 mm squared and consumed up to 5 to 10 watts at maximum).  The node just did not scale power very effectively.  It provided a smaller die size, but it did not increase power efficiency and switching performance significantly as compared to 28 nm high performance nodes.

The information Chipworks has provided also verifies that Samsung's 14 nm FF process is more size optimized than TSMC's 16 nm FF.  There was originally some talk about both nodes being very similar in overall transistor size and density, but Samsung has a slightly tighter design.  Neither of them are smaller than Intel's latest 14 nm which is going into its second generation form.  Intel still has a significant performance and size advantage over everyone else in the field.  Going back to size we see the Samsung chip is around 96 mm square while the TSMC chip is 104.5 mm square.  This is not huge, but it does show that the Samsung process is a little tighter and can squeeze more transistors per square mm than TSMC.

In terms of actual power consumption and clock scaling we have nothing to go on here.  The chips are both represented in the 6S and 6S+.  Testing so far has not shown there to be significant differences between the two SOCs so far.  In theory one could be performing better than the other, but in reality we have not tested these chips at a low enough level to discern any major performance or power issue.  My gut feeling here is that Samsung's process is more mature and running slightly better than TSMC's, but the differences are going to be minimal at best.

The next piece of info that we can glean from this is that there just isn't enough line space for all of the chip companies who want to fabricate their parts with either Samsung or TSMC.  From a chip standpoint a lot of work has to be done to port a design to two different process nodes.  While 14 and 16 are similar in overall size and the usage of FinFETS, the standard cells and design libraries for both Samsung and TSMC are going to be very different.  It is not a simple thing to port over a design.  A lot of work has to be done in the design stage to make a chip work with both nodes.  I can tell you that there is no way that both chips are identical in layout.  It is not going to be a "dumb port" where they just adjust the optics with the same masks and magically make these chips work right off the bat.  Different mask sets for each fab, verification of both designs, and troubleshooting the yields by metal layer changes will be different for each manufacturer.

In the end this means that there just simply was not enough space at either TSMC or Samsung to handle the demand that Apple was expecting.  Because Apple has deep pockets they contracted out both TSMC and Samsung to produce two very similar, but still different parts.  Apple also likely outbid and locked down what availability to process wafers that Samsung and TSMC have, much to the dismay of other major chip firms.  I have no idea what is going on in the background with people like NVIDIA and AMD when it comes to line space for manufacturing their next generation parts.  At least for AMD it seems that their partnership with GLOBALFOUNDRIES and their version of 14 nm FF is having a hard time taking off.  Eventually more space will be made in production and yields and bins will improve.  Apple will stop taking up so much space and we can get other products rolling off the line.  In the meantime, enjoy that cutting edge iPhone 6S/+ with the latest 14/16 nm FF chips.

Source: Chipworks

Podcast #367 - AMD R9 Nano, a Corsair GTX 980Ti, NVIDIA Pascal Rumors and more!

Subject: General Tech | September 17, 2015 - 12:00 PM |
Tagged: xps 12, video, TSMC, Steam Controller, r9 nano, podcast, pascal, nvidia, msi, hdplex h5, gtx 980ti sea hawk, fury x, Fiji, dell, corsair, amd

PC Perspective Podcast #367 - 09/17/2015

Join us this week as we discuss the AMD R9 Nano, a Corsair GTX 980Ti, NVIDIA Pascal Rumors and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Report: TSMC To Produce NVIDIA Pascal On 16 nm FinFET

Subject: Graphics Cards | September 16, 2015 - 09:16 AM |
Tagged: TSMC, Samsung, pascal, nvidia, hbm, graphics card, gpu

According to a report by BusinessKorea TSMC has been selected to produce the upcoming Pascal GPU after initially competing with Samsung for the contract.

PascalBoard.jpg

Though some had considered the possibility of both Samsung and TSMC sharing production (albeit on two different process nodes, as Samsung is on 14 nm FinFET), in the end the duties fall on TSMC's 16 nm FinFET alone if this report is accurate. The move is not too surprising considering the longstanding position TSMC has maintained as a fab for GPU makers and Samsung's lack of experience in this area.

The report didn't make the release date for Pascal any more clear, naming it "next year" for the new HBM-powered GPU, which will also reportedly feature 16 GB of HBM 2 memory for the flagship version of the card. This would potentially be the first GPU released at 16 nm (unless AMD has something in the works before Pascal's release), as all current AMD and NVIDIA GPUs are manufactured at 28 nm.

Podcast #359 - AMD R9 Nano, 4TB Samsung SSDs, Windows 10 and more!

Subject: General Tech | July 23, 2015 - 01:53 PM |
Tagged: podcast, video, amd, r9 nano, Fiji, Samsung, 4TB, windows 10, acer, aspire V, X99E-ITX/ac, TSMC, 10nm, 7nm

PC Perspective Podcast #359 - 07/23/2015

Join us this week as we discuss the AMD R9 Nano, 4TB Samsung SSDs, Windows 10 and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

TSMC Plans 10nm, 7nm, and "Very Steep" Ramping of 16nm.

Subject: Graphics Cards, Processors, Mobile | July 19, 2015 - 06:59 AM |
Tagged: Zen, TSMC, Skylake, pascal, nvidia, Intel, Cannonlake, amd, 7nm, 16nm, 10nm

Getting smaller features allows a chip designer to create products that are faster, cheaper, and consume less power. Years ago, most of them had their own production facilities but that is getting rare. IBM has just finished selling its manufacturing off to GlobalFoundries, which was spun out of AMD when it divested from fabrication in 2009. Texas Instruments, on the other hand, decided that they would continue manufacturing but get out of the chip design business. Intel and Samsung are arguably the last two players with a strong commitment to both sides of the “let's make a chip” coin.

tsmc.jpg

So where do you these chip designers go? TSMC is the name that comes up most. Any given discrete GPU in the last several years has probably been produced there, along with several CPUs and SoCs from a variety of fabless semiconductor companies.

Several years ago, when the GeForce 600-series launched, TSMC's 28nm line led to shortages, which led to GPUs remaining out of stock for quite some time. Since then, 28nm has been the stable work horse for countless high-performance products. Recent chips have been huge, physically, thanks to how mature the process has become granting fewer defects. The designers are anxious to get on smaller processes, though.

In a conference call at 2 AM (EDT) on Thursday, which is 2 PM in Taiwan, Mark Liu of TSMC announced that “the ramping of our 16 nanometer will be very steep, even steeper than our 20nm”. By that, they mean this year. Hopefully this translates to production that could be used for GPUs and CPUs early, as AMD needs it to launch their Zen CPU architecture in 2016, as early in that year as possible. Graphics cards have also been on that technology for over three years. It's time.

Also interesting is how TSMC believes that they can hit 10nm by the end of 2016. If so, this might put them ahead of Intel. That said, Intel was also confident that they could reach 10nm by the end of 2016, right until they announced Kaby Lake a few days ago. We will need to see if it pans out. If it does, competitors could actually beat Intel to the market at that feature size -- although that could end up being mobile SoCs and other integrated circuits that are uninteresting for the PC market.

Following the announcement from IBM Research, 7nm was also mentioned in TSMC's call. Apparently they expect to start qualifying in Q1 2017. That does not provide an estimate for production but, if their 10nm schedule is both accurate and also representative of 7nm, that would production somewhere in 2018. Note that I just speculated on an if of an if of a speculation, so take that with a mine of salt. There is probably a very good reason that this date wasn't mentioned in the call.

Back to the 16nm discussion, what are you hoping for most? New GPUs from NVIDIA, new GPUs from AMD, a new generation of mobile SoCs, or the launch of AMD's new CPU architecture? This should make for a highly entertaining comments section on a Sunday morning, don't you agree?

Fab Wars 10 nm; may the FinFET be with you

Subject: General Tech | May 26, 2015 - 12:27 PM |
Tagged: TSMC, Samsung, 10 nm FinFET

The race to 10nm FinFET production is still tight with TSMC expected to tape out their first parts towards the end of the year and Samsung today revealing a similar time line according to The Inquirer.  Samsung has also confirmed they will be starting construction on a new plant in South Korea in 2017, which is a good move for the company considering their loss of the chip contract for the new iPhone to TSMC.  With Samsung going almost full out on their 14nm FinFET lines for the Galaxy S6 and Galaxy S6 Edge Apple had concerns that Samsung would not be able to keep up with demand and unfortunately GLOBALFOUNDRIES could not take advantage either as their yields are, to put it politely, lacking. 

samsung-logo-vector.jpg

"SAMSUNG HAS REVEALED that it will soon begin production of its 10nm FinFET node, and that the chip will be in full production by the end of 2016."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

SEC Filing Reveals NVIDIA Now Using Samsung for Some Manufacturing

Subject: General Tech | March 21, 2015 - 12:09 AM |
Tagged: TSMC, SoC, Semiconductor, Samsung, process node, nvidia, gpu, fab

Want to liven up your weekend? Forget college basketball, we all know that few things are more exciting than SEC filings - and oh boy do we have a great read for you! (OK, this one is actually interesting!)

10K.png

Ah, legal documents...

NVIDIA has disclosed in their latest 10-K filing that none other than Samsung is manufacturing some of the company’s chips. TSMC has been the source of GPUs for both AMD and NVIDIA for some time, but this filing (the full document is available from the SEC website) has a very interesting mention of the suppliers of their silicon under the “Manufacturing” section:

"We utilize industry-leading suppliers, such as Taiwan Semiconductor Manufacturing Company Limited and Samsung Electronics Co. Ltd, to produce our semiconductor wafers."

Back in December NVIDIA commented on its lawsuit against Samsung for alleged IP theft, which only makes this partnership seem more unlikely. However even Apple (which has their own famous legal history with Samsung, of course) has relied on Samsung for some of the production of their A-series SoCs, including the current crop of A8 chips.  Business is business, and Samsung Foundry has been a reliable source of silicon for multiple manufacturers - particularly during times when TSMC has struggled to meet demand at smaller process nodes.

Process_Tech.png

Samsung's Current Semiconductor Offering

It is unclear at this point whether the wafers produced by Samsung Semiconductor are for NVIDIA’s mobile parts exclusively, or if any of the desktop GPUs were produced there rather than at TSMC. The partnership could also be attributed simply to scale, just as Apple has augmented A8 SoC supply with their rival’s fab while primarily relying on TSMC. It will be interesting to see just how pervasive the chips produced by Samsung are within the NVIDIA lineup, and what future products might be manufactured with their newest 14nm FinFET process technology.

Source: SEC

It has been a rough quarter for the tech industry

Subject: General Tech | March 10, 2015 - 12:36 PM |
Tagged: Q1, gigabyte, earnings, msi, TSMC, amd, Intel, nvidia

There is quite a bit of news on how various component manufacturers have fared at the beginning of 2015 and not much of it is good.  Gigabyte has seen revenues drop almost 20% compared to this time last year and a significantly higher overall drop and while MSI is up almost 4% when compared to this quarter in 2014, February saw a drop of over 25% and over the total year a drop of nearly 8%.  TSMC has taken a hit of 28% over this month though it is showing around 33% growth over the past year thanks to its many contract wins over the past few months.  Transcend, Lite-On and panel maker HannStar all also reported losses over this time as did overseas notebook designers such as Wistron, Compal and Inventec.

Intel is doing well though perhaps not as profitably as they would like, and we know that NVIDIA had a great 2014 but not primarily because of growth in the market but by poaching from another company which has been struggling but not as much as previous years.  The PC industry is far from dead but 2014 was not a kind year.

ARROW-415137.jpg

"Gigabyte Technology has reported consolidated revenues of NT$3.216 billion (US$101.93million) for February 2015, representing a 39.31% drop on month and 26.75% drop on year.

The company has totaled NT$8.515 billion in year-to-date revenues, down 18.47% compared with the same time last year."

Here is some more Tech News from around the web:

Tech Talk

Source: DigiTimes

ARM and TSMC are headed for 10nm

Subject: General Tech | October 6, 2014 - 12:30 PM |
Tagged: arm, TSMC, 10nm, FinFET, armv8-a

ARM and TSMC are moving ahead at an impressive pace, now predicting 10nm FinFET designs taping out possibly in the fourth quarter of 2015.  That could even be possible considering how quickly they incorporated FinFET to move from 20nm SoC to 16nm.  The  the ARMv8-A processor architecture will have a few less transistors than a high end CPU which does help their process adoption move more quickly than AMD or Intel but with AMD partnering up with ARM there is the possibility of seeing this new ARM architecture in AMD chips in the not too distant future.  As DigiTimes points out, there are many benefits that have come from this partnership between ARM and TSMC.

index.jpg

"ARM and Taiwan Semiconductor Manufacturing Company (TSMC) have announced a new multi-year agreement that will deliver ARMv8-A processor IP optimized for TSMC 10nm FinFET process technology. Because of the success in scaling from 20nm SoC to 16nm FinFET, ARM and TSMC have decided to collaborate again for 10FinFET."

Here is some more Tech News from around the web:

Tech Talk

Source: DigiTimes