NVIDIA Reveals 64-bit Denver CPU Core Details, Headed to New Tegra K1 Powered Devices Later This Year

Subject: Processors | August 12, 2014 - 01:06 AM |
Tagged: tegra k1, project denver, nvidia, Denver, ARMv8, arm, Android, 64-bit

During GTC 2014 NVIDIA launched the Tegra K1, a new mobile SoC that contains a powerful Kepler-based GPU. Initial processors (and the resultant design wins such as the Acer Chromebook 13 and Xiaomi Mi Pad) utilized four ARM Cortex-A15 cores for the CPU side of things, but later this year NVIDIA is deploying a variant of the Tegra K1 SoC that switches out the four A15 cores for two custom (NVIDIA developed) Denver CPU cores.

Today at the Hot Chips conference, NVIDIA revealed most of the juicy details on those new custom cores announced in January which will be used in devices later this year.

The custom 64-bit Denver CPU cores use a 7-way superscalar design and run a custom instruction set. Denver is a wide but in-order architecture that allows up to seven operations per clock cycle. NVIDIA is using a custom ISA and on-the-fly binary translation to convert ARMv8 instructions to microcode before execution. A software layer and 128MB cache enhance the Dynamic Code Optimization technology by allowing the processor to examine and optimize the ARM code, convert it to the custom instruction set, and further cache the converted microcode of frequently used applications in a cache (which can be bypassed for infrequently processed code). Using the wider execution engine and Dynamic Code Optimization (which is transparent to ARM developers and does not require updated applications), NVIDIA touts the dual Denver core Tegra K1 as being at least as powerful as the quad and octo-core packing competition.

Further, NVIDIA has claimed at at peak throughput (and in specific situations where application code and DCO can take full advantage of the 7-way execution engine) the Denver-based mobile SoC handily outpaces Intel’s Bay Trail, Apple’s A7 Cyclone, and Qualcomm’s Krait 400 CPU cores. In the results of a synthetic benchmark test provided to The Tech Report, the Denver cores were even challenging Intel’s Haswell-based Celeron 2955U processor. Keeping in mind that these are NVIDIA-provided numbers and likely the best results one can expect, Denver is still quite a bit more capable than existing cores. (Note that the Haswell chips would likely pull much farther ahead when presented with applications that cannot be easily executed in-order with limited instruction parallelism).

NVIDIA Denver CPU Core 64bit ARMv8 Tegra K1.png

NVIDIA is ratcheting up mobile CPU performance with its Denver cores, but it is also aiming for an efficient chip and has implemented several power saving tweaks. Beyond the decision to go with an in-order execution engine (with DCO hopefully mostly making up for that), the beefy Denver cores reportedly feature low latency power state transitions (e.g. between active and idle states), power gating, dynamic voltage, and dynamic clock scaling. The company claims that “Denver's performance will rival some mainstream PC-class CPUs at significantly reduced power consumption.” In real terms this should mean that the two Denver cores in place of the quad core A15 design in the Tegra K1 should not result in significantly lower battery life. The two K1 variants are said to be pin compatible such that OEMs and developers can easily bring upgraded models to market with the faster Denver cores.

NVIDIA Denver CPU cores in Tegra K1.png

For those curious, In the Tegra K1, the two Denver cores (clocked at up to 2.5GHz) share a 16-way L2 cache and each have 128KB instruction and 64KB data L1 caches to themselves. The 128MB Dynamic Code Optimization cache is held in system memory.

Denver is the first (custom) 64-bit ARM processor for Android (with Apple’s A7 being the first 64-bit smartphone chip), and NVIDIA is working on supporting the next generation Android OS known as Android L.

The dual Denver core Tegra K1 is coming later this year and I am excited to see how it performs. The current K1 chip already has a powerful fully CUDA compliant Kepler-based GPU which has enabled awesome projects such as computer vision and even prototype self-driving cars. With the new Kepler GPU and Denver CPU pairing, I’m looking forward to seeing how NVIDIA’s latest chip is put to work and the kinds of devices it enables.

Are you excited for the new Tegra K1 SoC with NVIDIA’s first fully custom cores?

Source: NVIDIA

Acer Unveils Chromebook 13 Powered By NVIDIA Tegra K1 SoC

Subject: General Tech, Mobile | August 11, 2014 - 08:00 AM |
Tagged: webgl, tegra k1, nvidia, geforce, Chromebook, Bay Trail, acer

Today Acer unveiled a new Chromebook powered by an NVIDIA Tegra K1 processor. The aptly-named Chromebook 13 is 13-inch thin and light notebook running Google’s Chrome OS with up to 13 hours of battery life and three times the graphical performance of existing Chromebooks using Intel Bay Trail and Samsung Exynos processors.

Acer Chromebook 13 CB5-311_AcerWP_app-02.jpg

The Chromebook 13 is 18mm thick and comes in a white plastic fanless chassis that hosts a 13.3” display, full size keyboard, trackpad, and HD webcam. The Chromebook 13 will be available with a 1366x768 or 1920x1080 resolution panel depending on the particular model (more on that below).

Beyond the usual laptop fixtures, external I/O includes two USB 3.0 ports, HDMI video output, a SD card reader, and a combo headphone/mic jack. Acer has placed one USB port on the left side along with the card reader and one USB port next to the HDMI port on the rear of the laptop. Personally, I welcome the HDMI port placement as it means connecting a second display will not result in a cable invading the mousing area should i wish to use a mouse (and it’s even south paw friendly Scott!).

The Chromebook 13 looks decent from the outside, but it is the internals where the device gets really interesting. Instead of going with an Intel Bay Trail (or even Celeron/Core i3), Acer has opted to team up with NVIDIA to deliver the world’s first NVIDIA-powered Chromebook.

Specifically, the Chromebook 13 uses a NVIDIA Tegra K1 SoC, up to 4GB RAM, and up to 32GB of flash storage. The K1 offers up four A15 CPU cores clocked at 2.1GHz, and a graphics unit with 192 Kepler-based CUDA cores. Acer rates the Chromebook 13 at 11 hours with the 1080p panel or 13 hours when equipped with the 1366x768 resolution display. Even being conservative, the Chromebook 13 looks to be the new leader in Chromebook battery life (with the previous leader claiming 11 hours).

acer chromebook 13 tegra k1 quad core multitasking benchmark.jpg

A graph comparing WebGL performance between the NVIDIA Tegra K1, Intel (Bay Trail) Celeron N2830, Samsung Exynos 5800, and Samsung Exynos 5250. Results courtesy NVIDIA.

The Tegra K1 is a powerful little chip, and it is nice to see NVIDIA get a design win here. NVIDIA claims that the Tegra K1, which is rated at 326 GFLOPS of compute performance, offers up to three times the graphics performance of the Bay Trail N2830 and Exynos 5800 SoCs. Additionally, the K1 reportedly uses slightly less power and delivers higher multi-tasking performance. I’m looking forward to seeing independent reviews in this laptop formfactor and hoping that the chip lives up to its promises.

The Chromebook 13 is currently up for pre-order and will be available in September starting at $279. The Tegra K1-powered laptop will hit the United States and Europe first, with other countries to follow. Initially, the Europe roll-out will include “UK, Netherlands, Belgium, Denmark, Sweden, Finland, Norway, France, Germany, Russia, Italy, Spain, South Africa and Switzerland.”

Acer Chromebook 13 CB5-311_closed 2.jpg

Acer is offering three consumer SKUs and one education SKU that will be exclusively offering through a re-seller. Please see the chart below for the specifications and pricing.

Acer Chromebook 13 Models System Memory (RAM) Storage (flash) Display Price MSRP
CB5-311-T9B0 2GB 16GB 1920 x 1080 $299.99
CB5-311-T1UU 4GB 32GB 1920 x 1080 $379.99
CB5-311-T7NN - Base Model 2GB 16GB 1366 x 768 $279.99
Educational SKU (Reseller Only) 4GB 16GB 1366 x 768 $329.99

Intel made some waves in the Chromebook market earlier this year with the announcement of several new Intel-powered Chrome devices and the addition of conflict-free Haswell Core i3 options. It seems that it is now time for the ARM(ed) response. I’m interested to see how NVIDIA’s newest model chip stacks up to the current and upcoming Intel x86 competition in terms of graphics power and battery usage.

As far as Chromebooks go, if the performance is at the point Acer and NVIDIA claim, this one definitely looks like a decent option considering the price. I think a head-to-head between the ASUS C200 (Bay Trail N2830, 2GB RAM, 16GB eMMC, and 1366x768 display at $249.99 MSRP) and Acer Chromebook 13 would be interesting as the real differentiator (beyond aesthetics) is the underlying SoC. I do wish there was a 4GB/16GB/1080p option in the Chromebook 13 lineup though considering the big price jump to get 4GB RAM (mostly as a result of the doubling of flash) in the $379.99 model at, say, $320 MSRP.

Read more about Chromebooks at PC Perspective!

Source: Acer
Author:
Subject: Mobile
Manufacturer: NVIDIA

A Tablet and Controller Worth Using

An interesting thing happened a couple of weeks back, while I was standing on stage at our annual PC Perspective Hardware Workshop during Quakecon in Dallas, TX. When NVIDIA offered up a SHIELD (now called the SHIELD Portable) for raffle, the audience cheered. And not just a little bit, but more than they did for nearly any other hardware offered up during the show. That included motherboards, graphics card, monitors, even complete systems. It kind of took me aback - NVIDIA SHIELD was a popular brand, a name that was recognized, and apparently, a product that people wanted to own. You might not have guessed that based on the sales numbers that SHIELD has put forward though. Even though it appeared to have a significant mind share, market share was something that was lacking.

Today though, NVIDIA prepares the second product in the SHIELD lineup, the SHIELD Tablet, a device the company hopes improves on the idea of SHIELD to encourage other users to sign on. It's a tablet (not a tablet with a controller attached), it has a more powerful SoC that can utilize different APIs for unique games, it can be more easily used in a 10-ft console mode and the SHIELD specific features like Game Stream are included and enhanced.

The question of course though is easy to put forward: should you buy one? Let's explore.

The NVIDIA SHIELD Tablet

At first glance, the NVIDIA SHIELD Tablet looks like a tablet. That actually isn't a negative selling point though, as the SHIELD Tablet can and does act like a high end tablet in nearly every way: performance, function, looks. We originally went over the entirety of the tablet's specifications in our first preview last week but much of it bears repeating for this review.

21.jpg

The SHIELD Tablet is built around the NVIDIA Tegra K1 SoC, the first mobile silicon to implement the Kepler graphics architecture. That feature alone makes this tablet impressive because it offers graphics performance not seen in a form factor like this before. CPU performance is also improved over the Tegra 4 processor, but the graphics portion of the die sees the largest performance jump easily.

IMG_0417.JPG

A 1920x1200 resolution 7.9-in IPS screen faces the user and brings the option of full 1080p content lacking with the first SHIELD portable. The screen is bright and crisp, easily viewable in bring lighting for gaming or use in lots of environments. Though the Xiaomi Mi Pad 7.9 had a 2048x1536 resolution screen, the form factor of the SHIELD Tablet is much more in line with what NVIDIA built with the Tegra Note 7.

Continue reading our review of the NVIDIA SHIELD Tablet and Controller!!

Podcast #310 - NVIDIA SHIELD Tablet, WD 6TB Red and 4TB Red Pro HDDs and more!

Subject: General Tech | July 24, 2014 - 12:58 PM |
Tagged: podcast, video, nvidia, shield, shield tablet, tegra, tegra k1, WD, red, 6tb red, 4tb red pro, A88X-G45 Gaming, xiaomi, maxwell, amd, Intel

PC Perspective Podcast #310 - 07/24/2014

Join us this week as we discuss the NVIDIA SHIELD Tablet, WD 6TB Red and 4TB Red Pro HDDs and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Program length: 1:25:40

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

 

One year later and the Nvidia Shield becomes a Tablet

Subject: General Tech | July 22, 2014 - 01:58 PM |
Tagged: twitch, tegra k1, tegra, shield tablet, shield controller, shield, nvidia, grid, gamestream

Shame on you if you skipped Ryan's review of the new Shield, for those that have and are looking for a second opinion you can check out The Tech Report and other links below the fold.  To quickly recap the controller is now optional but you can connect up to 4 simultaneously for group gaming, the built in 8" IPS display is capable of 1920x1200 and you can output video to an external monitor at 1080p.  The 192 shader processors on the Tegra K1 SoC inside should have no problems with fast paced action at these resolutions and at launch there are almost a dozen games optimized for the K1.  The focus on gaming performance is obvious but the inclusion of DirectStylus 2 for those who want to use the tablet for creating art adds an interesting extra feature to this tablet, especially if it will work with NVIDIA's ShadowPlay streaming technology as live broadcasts of artists drawing has become quite popular in some crowds.  It will be very interesting to see this tablet compete against consoles and the soon to arrive Steamboxes.

tablet-controller2.jpg

"Just under a year since the release of the Shield Portable, Nvidia has announced a second member of the Shield family. As expected, it's the Shield Tablet, an Android slate with an emphasis on gaming. Like the Shield Portable before it, the Shield Tablet will sell direct from Nvidia, not from a partner company. The Shield Tablet extends Nvidia's Android gaming focus to a new form factor, making it one of the first tablets anywhere with a fairly pure gaming mission."

Here is some more Tech News from around the web:

Tech Talk

Author:
Subject: Mobile
Manufacturer: NVIDIA

SHIELD Tablet with new Features

It's odd how regular these events seem to come. Almost exactly one year ago today, NVIDIA launched the SHIELD gaming device, which is a portable Android tablet attached to a controller, all powered by the Tegra 4 SoC. It was a completely unique device that combined a 5-in touchscreen with a console-grade controller to build the best Android gaming machine you could buy. NVIDIA did its best to promote Android gaming as a secondary market to consoles and PCs, and the frequent software updates kept the SHIELD nearly-up-to-date with the latest Android software releases. 

As we approach the one year anniversary of SHIELD, NVIDIA is preparing to release another product to add to the SHIELD family of products: the SHIELD Tablet. Chances are, you could guess what this device is already. It is a tablet powered by Tegra K1 and updated to support all SHIELD software. Of course, there are some new twists as well.

03.jpg

The NVIDIA SHIELD Tablet is being targeted, as the slide above states, at being "the ultimate tablet for gamers." This is a fairly important point to keep in mind as you we walk through the details of the SHIELD tablet, and its accessories, as there are certain areas where NVIDIA's latest product won't quite appeal to you for general purpose tablet users. 

Most obviously, this new SHIELD device is a tablet (and only a tablet). There is no permanently attached controller. Instead, the SHIELD controller will be an add-on accessory for buyers. NVIDIA has put a lot of processing power into the tablet as well as incredibly interesting new software capabilities to enable 10-ft use cases and even mobile Twitch streaming.

Continue reading our preview of the NVIDIA SHIELD Tablet and Controller powered by Tegra K1!!

Author:
Subject: Mobile
Manufacturer: Xiaomi

The First with the Tegra K1 Processor

Back in May a Chinese company announced what was then the first and only product based on NVIDIA’s Tegra K1 SoC, the Xiaomi Mi Pad 7.9. Since then we have had a couple of other products hit our news wire including Google’s own Project Tango development tablet. But the Xiaomi is the first to actually be released, selling through 50,000 units in four minutes according to some reports. I happened to find one on Aliexpress.com, a Chinese sell-through website, and after a few short days the DHL deliveryman dropped the Tegra K1 powered machine off at my door.

If you are like me, the Xiaomi name was a new one. A privately owned company from Beijing and has become one of China’s largest electronics companies, jumping into the smartphone market in 2011. The Mi Pad marks the company’s first attempt at a tablet device, and the partnership with NVIDIA to be an early seller of the Tegra K1 seems to be making waves.

02.jpg

The Tegra K1 Processor

The Tegra K1 SoC was first revealed at CES in January of 2014, and with it came a heavy burden of expectation from NVIDIA directly, as well as from investors and the media. The first SoC from the Tegra family to have a GPU built from the ground up by NVIDIA engineers, the Tegra K1 gets its name from the Kepler family of GPUs. It also happens to get the base of its architecture there as well.

The processor of the Tegra K1 look very familiar and include four ARM Cortex-A15 “r3” cores and 2MB of L2 cache with a fifth A15 core used for lower power situations.  This 4+1 design is the same that was introduced with the Tegra 4 processor last year and allows NVIDIA to implement a style of “big.LITTLE” design that is unique.  Some slight modifications to the cores are included with Tegra K1 that improve performance and efficiency, but not by much – the main CPU is very similar to the Tegra 4.

The focus on the Tegra K1 will be on the GPU, now powered by NVIDIA’s Kepler architecture.  The K1 features 192 CUDA cores with a very similar design to a single SMX on today’s GeForce GTX 700-series graphics cards.  This includes OpenGL ES3.0 support but much more importantly, OpenGL 4.4 and DirectX 11 integration.  The ambition of bringing modern, quality PC gaming to mobile devices is going to be closer than you ever thought possible with this product and the demos I have seen running on reference designs are enough to leave your jaw on the floor.

03.jpg

By far the most impressive part of Tegra K1 is the implementation of a full Kepler SMX onto a chip that will be running well under 2 watts.  While it has been the plan from NVIDIA to merge the primary GPU architectures between mobile and discrete, this choice did not come without some risk.  When the company was building the first Tegra part it basically had to make a hedge on where the world of mobile technology would be in 2015.  NVIDIA might have continued to evolve and change the initial GPU IP that was used in Tegra 1, adding feature support and increasing the required die area to improve overall GPU performance, but instead they opted to position a “merge point” with Kepler in 2014.  The team at NVIDIA saw that they were within reach of the discontinuity point we are seeing today with Tegra K1, but in truth they had to suffer through the first iterations of Tegra GPU designs that they knew were inferior to the design coming with Kepler.

You can read much more on the technical detail of the Tegra K1 SoC by heading over to our launch article that goes into the updated CPU design, as well as giving you all the gore behind the Kepler integration.

By far the most interesting aspect of the Xiaomi Mi Pad 7.9 tablet is the decsion to integrate the Tegra K1 processor. Performance and battery life comparisons with other 7 to 8-in tablets will likely not impact how it sells in China, but the results may mean the world to NVIDIA as they implore other vendors to integrate the SoC.

Continue reading our review of the Xiaomi Mi Pad 7.9 tablet powered by Tegra K1!!

Google I/O 2014: Android Extension Pack Announced

Subject: General Tech, Graphics Cards, Mobile, Shows and Expos | July 7, 2014 - 04:06 AM |
Tagged: tegra k1, OpenGL ES, opengl, Khronos, google io, google, android extension pack, Android

Sure, this is a little late. Honestly, when I first heard the announcement, I did not see much news in it. The slide from the keynote (below) showed four points: Tesselation, Geometry Shaders, Computer [sic] Shaders, and ASTC Texture Compression. Honestly, I thought tesselation and geometry shaders were part of the OpenGL ES 3.1 spec, like compute shaders. This led to my immediate reaction: "Oh cool. They implemented OpenGL ES 3.1. Nice. Not worth a news post."

google-android-opengl-es-extensions.jpg

Image Credit: Blogogist

Apparently, they were not part of the ES 3.1 spec (although compute shaders are). My mistake. It turns out that Google is cooking their their own vendor-specific extensions. This is quite interesting, as it adds functionality to the API without the developer needing to target a specific GPU vendor (INTEL, NV, ATI, AMD), waiting for approval from the Architecture Review Board (ARB), or using multi-vendor extensions (EXT). In other words, it sounds like developers can target Google's vendor without knowing the actual hardware.

Hiding the GPU vendor from the developer is not the only reason for Google to host their own vendor extension. The added features are mostly from full OpenGL. This makes sense, because it was announced with NVIDIA and their Tegra K1, Kepler-based SoC. Full OpenGL compatibility was NVIDIA's selling point for the K1, due to its heritage as a desktop GPU. But, instead of requiring apps to be programmed with full OpenGL in mind, Google's extension pushes it to OpenGL ES 3.1. If the developer wants to dip their toe into OpenGL, then they could add a few Android Extension Pack features to their existing ES engine.

Epic Games' Unreal Engine 4 "Rivalry" Demo from Google I/O 2014.

The last feature, ASTC Texture Compression, was an interesting one. Apparently the Khronos Group, owners of OpenGL, were looking for a new generation of texture compression technologies. NVIDIA suggested their ZIL technology. ARM and AMD also proposed "Adaptive Scalable Texture Compression". ARM and AMD won, although the Khronos Group stated that the collaboration between ARM and NVIDIA made both proposals better than either in isolation.

Android Extension Pack is set to launch with "Android L". The next release of Android is not currently associated with a snack food. If I was their marketer, I would block out the next three versions as 5.x, and name them (L)emon, then (M)eringue, and finally (P)ie.

Would I do anything with the two skipped letters before pie? (N)(O).

Google's Project Tango Announced, Uses NVIDIA Tegra K1

Subject: General Tech, Mobile | June 5, 2014 - 02:51 PM |
Tagged: tegra k1, tegra, project tango, nvidia, google, Android

Today, Google announced their "Project Tango" developer kit for tablets with spatial awareness. With a price tag of $1,024 USD, it is definitely aimed at developers. In fact, the form to be notified about the development kit has a required check box that is labeled, "I am a developer". Slightly above the form is another statement, "These development kits are not a consumer device and will be available in limited quantities".

So yes, you can only buy these if you are a developer.

The technology is the unique part. Project Tango is aimed at developers to make apps which understand the 3D world around the tablet. Two examples categories they have already experimented with are robotics and computer vision. Of course, this could also translate to alternate reality games and mapping.

While Google has not been too friendly with OpenCL in its Android platform, it makes sense that they would choose a flexible GPU with a wide (and deep) range of API support. While other SoCs are probably capable enough, the Kepler architecture in the Tegra K1 is about as feature-complete as you can get in a mobile chip, because it is basically a desktop chip.

google-project-tango.jpg

Google's Project Tango is available to developers, exclusively, for $1,024 and ships later this month.

Also, that price is clearly a pun.

Source: Google

Podcast #302 - ASUS PB287Q 4K Monitor, NVIDIA and AMD's fight over GameWorks, Haswell-E Leaks and more!

Subject: General Tech | May 29, 2014 - 02:51 PM |
Tagged: video, podcast, asus, 4k, pb287q, nvidia, amd, gameworks, ubisoft, watch dogs, crucial, mx100, tegra k1, gsync

PC Perspective Podcast #302 - 05/29/2014

Join us this week as we discuss the ASUS PB287Q 4K Monitor, NVIDIA and AMD's fight over GameWorks, Haswell-E Leaks and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Allyn Maleventano

Program length: 1:29:01
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week:
    1. Allyn: For Josh - the Wenger Giant Knife
  4. Closing/outro