Hello, Canadians! Interested in a Relatively Cheap 1TB SSD?

Subject: Storage | March 23, 2016 - 06:16 PM |
Tagged: newegg, Mushkin, silicon motion, micron, ssd

Here's a brief post for our Canadian fans. If you have been interested in a decent, large SSD, then you might want to check out Newegg Canada. The Mushkin Enhanced Reactor 1TB is currently $100 off, which puts it at a price of $299.99 CDN plus tax and shipping. While 30c/GB might sound mundane to our neighbours to the south, the currency conversion works out to about 23c/GB USD.

mushkin-2016-reactor-cheapnewegg.jpg

Sure, it's not the fastest SSD on the market, but it's a solid, mainstream one. A 2TB version also exists, but you will be paying about $60 more than just getting two, 1TB SKUs. This version uses the Silicon Motion SM2246EN controller and Micron flash. We might end up with better or cheaper drives coming in the future, I have no idea, but this should be good for cheap, decent, and now.

Source: Newegg

Samsung's tiny BGA based SSD, destined for your tablet and smartphone

Subject: General Tech | March 23, 2016 - 12:10 PM |
Tagged: Samsung, ssd, BGA

Instead of the standard pin grid array, Samsung's PM971 SSD uses BGA which allows them to for a much smaller overall size, albeit at the cost of it being permanently soldered to a circuit motherboard.  The three models, 128GB, 256GB and 512GB, will each be smaller than an SD card which is why these SSDs will be able to be used in future generations of small mobile devices.  This not only foretells of a significantly higher storage capacity for your phone but also a faster one as Samsung's PR describes sequential read speeds of up to 1500MBps and sequential writes at 600MBps, or if you prefer, 190K random read IOPS and 150K random write IOPS.  They haven't really given any details beyond those stats but you can try to glean some more information from the Japanese language article which The Inquirer links to in their story here.

index.png

"SAMSUNG HAS been showing off what it believes is the answer to the question of how to squeeze even more out of smartphone and tablet form factors. And with blazing speeds of 1500MBps it's hard to argue."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Inquirer

Zotac is also slinging SSDs, check out the ZOTAC Premium Edition 480GB

Subject: Storage | March 17, 2016 - 02:40 PM |
Tagged: zotac, Premium Edition 480GB, ssd, Phison PS3110

That's right, ZOTAC offers a number of SSDs, including a PCIe based one, but today Hardware Canucks examines the Premium Edition 480GB.  It uses the Phison PS3110 controller, 256MB NANYA DDR3 for cache and the slightly older 19nm Toshiba Toggle MLC NAND.  This is similar to other lower cost SSDs and so you would expect the performance to be similar as well.  This is indeed the case, performance is similar to the PNY XLR8 and the Crucial MX200 drives and the price is attractive, Hardware Canucks saw it on sale for $65US for the 240GB model and less than $140 for the 480GB.  If you are looking for a lower cost SSD you should check out the full review.

board2_sm.jpg

"The mid-tier SSD market is a crowded place these days but Zotac may have a standout contender with their affordable yet fast Premium Edition."

Here are some more Storage reviews from around the web:

Storage

Seagate to Show 10 GB/s PCIe x16 Flash Drive at OCP Summit

Subject: Storage | March 8, 2016 - 03:07 PM |
Tagged: ssd, Seagate, pcie, NVMe, flash drive

Today Seagate announced that they are production ready on a couple of NVMe PCIe SSD models. These are data-center tailored units that focus on getting as much parallel flash into as small of a space as possible. From engineering drawings, the first appears to be a half height (HHHL) device, communicates over a PCIe 3.0 x8 link, and reaches a claimed 6.7GB/s:

Seagate-6.7GB-Sec-Production-Ready.png

The second model is a bit more interesting for a few reasons. This is a PCIe 3.0 x16 unit (same lane configuration as a high end GPU) that claims 10 GB/s:

Seagate-10GB-Sec-Production-Ready.png

10 GB/s, hmm, where have I seen that before? :)

The second image gives away a bit of what may be going on under that heatsink. There appears to be four M.2 form factor SSDs in there, which would imply that it would appear as four separate NVMe devices. This is no big deal for enterprise data applications that can be pointed at multiple physical devices, but that 10 GB/s does start to make more sense (as a combined total) as we know of no single SSD controller capable of that sort of throughput. It took four Intel SSD 750’s for us to reach that same 10 GB/s figure, so it stands to reason that Seagate would use that same trick, only with M.2 SSDs they can fit everything onto a single slot card.

That’s all we have on this release so far, but we may see some real product pics sneak out of the Open Compute Project Summit, running over the next couple of days.

Full press blast after the break!

Source: Businesswire
Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction

Around this same time last year, Samsung launched their Portable SSD T1. This was a nifty little external SSD with some very good performance and capabilities. Despite its advantages and the cool factor of having a thin and light 1TB SSD barely noticeable in your pocket, there was some feedback from consumers that warranted a few tweaks to the design. There was also the need for a new line as Samsung was switching over their VNAND from 32 to 48 layer, enabling a higher capacity tier for this portable SSD. All of these changes were wrapped up into the new Samsung Portable SSD T3:

160217-180734.jpg

Specifications

T3 specs.png

Most of these specs are identical to the previous T1, with some notable exceptions. Consumer feedback prompted a newer / heavier metal housing, as the T1 (coming in at only 26 grams) was almost too light. With that newer housing came a slight enlarging of dimensions. We will do some side by side comparisons later in the review.

Read on for our full review of the new Samsung T3!

A new Trion appears, is it still a good choice for an entry level SSD?

Subject: Storage | February 18, 2016 - 03:14 PM |
Tagged: Trion 150, toshiba, tlc, ssd, slc, sata, ocz, A15nm

As you may remember from Al's post, the OCZ Trion 150 is essentially the same as the previous Trion 100, except for the use of 15nm TLC flash from Toshiba and a lower initial price.  Hardware Canucks got their paws on two of the drives from this series to benchmark, the 480GB and 960GB models.  The 480GB model retains the 256MB DDR3 cache, the 960 doubles that to 512MB but there is one thing missing from this new series; instead of relying on capacitors to prevent lost data from a power failure they rely on OCZ's firmware based Power Failure Management Plus.  Read Hardware Canucks full review to see if the new Trion can match the price to performance of the original.

board1_sm.jpg

"With the budget-focused SSD market exploding, OCZ is launching the Trion 150, a refresh of their original Trion 100 series which should offer better performance and an even lower price."

Here are some more Storage reviews from around the web:

Storage

 

Podcast #387 - ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

Subject: General Tech | February 18, 2016 - 02:16 PM |
Tagged: x16 LTE, vulkan, video, ssd, Samsung, qualcomm, podcast, pb328q, opengl, nvidia, micron, Khronos, gtx 950, asus, apple, 840 evo, 750ti, 750 evo, 3d nand

PC Perspective Podcast #387 - 02/18/2016

Join us this week as we discuss the ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Program length: 1:34:18

  1. Week in Review:
  2. 0:35:00 This episode of the PC Perspective Podcast is brought to you by Audible, the world's leading provider of audiobooks with more than 180,000 downloadable titles across all types of literature including fiction, nonfiction, and periodicals. For your free audiobook, go to audible.com/pcper
  3. News items of interest:
  4. 1:07:00 This episode of PC Perspective Podcast is brought to you by Braintree. Even the best mobile app won’t work without the right payments API. That’s where the Braintree v.0 SDK comes in. One amazingly simple integration gives you every way to pay. Try out the sandbox and see for yourself at braintree­payments.com/pcper
  5. Hardware/Software Picks of the Week
  6. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

What Micron's Upcoming 3D NAND Means for SSD Capacity, Performance, and Cost

Subject: Storage | February 14, 2016 - 02:51 PM |
Tagged: vnand, ssd, Samsung, nand, micron, Intel, imft, 768Gb, 512GB, 3d nand, 384Gb, 32 Layer, 256GB

You may have seen a wave of Micron 3D NAND news posts these past few days, and while many are repeating the 11-month old news with talks of 10TB/3.5TB on a 2.5"/M.2 form factor SSDs, I'm here to dive into the bigger implications of what the upcoming (and future) generation of Intel / Micron flash will mean for SSD performance and pricing.

progression-3-.png

Remember that with the way these capacity increases are going, the only way to get a high performance and high capacity SSD on-the-cheap in the future will be to actually get those higher capacity models. With such a large per-die capacity, smaller SSDs (like 128GB / 256GB) will suffer significantly slower write speeds. Taking this upcoming Micron flash as an example, a 128GB SSD will contain only four flash memory dies, and as I wrote about back in 2014, such an SSD would likely see HDD-level sequential write speeds of 160MB/sec. Other SSD manufacturers already recognize this issue and are taking steps to correct it. At Storage Visions 2016, Samsung briefed me on the upcoming SSD 750 Series that will use planar 16nm NAND to produce 120GB and 250GB capacities. The smaller die capacities of these models will enable respectable write performance and will also enable them to discontinue their 120GB 850 EVO as they transition that line to higher capacity 48-layer VNAND. Getting back to this Micron announcement, we have some new info that bears analysis, and that pertains to the now announced page and block size:

  • 256Gb MLC: 16KB Page / 16MB Block / 1024 Pages per Block

  • 384Gb TLC: 16KB Page / 24MB Block / 1536 Pages per Block

To understand what these numbers mean, using the MLC line above, imagine a 16MB CD-RW (Block) that can write 1024 individual 16KB 'sessions' (Page). Each 16KB can be added individually over time, and just like how files on a CD-RW could be modified by writing a new copy in the remaining space, flash can do so by writing a new Page and ignoring the out of date copy. Where the rub comes in is when that CD-RW (Block) is completely full. The process at this point is very similar actually, in that the Block must be completely emptied before the erase command (which wipes the entire Block) is issued. The data has to go somewhere, which typically means writing to empty blocks elsewhere on the SSD (and in worst case scenarios, those too may need clearing before that is possible), and this moving and erasing takes time for the die to accomplish. Just like how wiping a CD-RW took a much longer than writing a single file to it, erasing a Block takes typically 3-4x as much time as it does to program a page.

With that explained, of significance here are the growing page and block sizes in this higher capacity flash. Modern OS file systems have a minimum bulk access size of 4KB, and Windows versions since Vista align their partitions by rounding up to the next 2MB increment from the start of the disk. These changes are what enabled HDDs to transition to Advanced Format, which made data storage more efficient by bringing the increment up from the 512 Byte sector up to 4KB. While most storage devices still use 512B addressing, it is assumed that 4KB should be the minimum random access seen most of the time. Wrapping this all together, the Page size (minimum read or write) is 16KB for this new flash, and that is 4x the accepted 4KB minimum OS transfer size. This means that power users heavy on their page file, or running VMs, or any other random-write-heavy operations being performed over time will have a more amplified effect of wear of this flash. That additional shuffling of data that must take place for each 4KB write translates to lower host random write speeds when compared to lower capacity flash that has smaller Page sizes closer to that 4KB figure.

schiltron-IMFT-edit.jpg

A rendition of 3D IMFT Floating Gate flash, with inset pulling back some of the tunnel oxide layer to show the location of the floating gate. Pic courtesy Schiltron.

Fortunately for Micron, their choice to carry Floating Gate technology into their 3D flash has netted them some impressive endurance benefits over competing Charge Trap Flash. One such benefit is a claimed 30,000 P/E (Program / Erase) cycle endurance rating. Planar NAND had dropped to the 3,000 range at its lowest shrinks, mainly because there was such a small channel which could only store so few electrons, amplifying the (negative) effects of electron leakage. Even back in the 50nm days, MLC ran at ~10,000 cycle endurance, so 30,000 is no small feat here. The key is that by using that same Floating Gate tech so good at controlling leakage for planar NAND on a new 3D channel that can store way more electrons enables excellent endurance that may actually exceed Samsung's Charge Trap Flash equipped 3D VNAND. This should effectively negate the endurance hit on the larger Page sizes discussed above, but the potential small random write performance hit still stands, with a possible remedy being to crank up the Over-Provisioning of SSDs (AKA throwing flash at the problem). Higher OP means less active pages per block and a reduction in the data shuffling forced by smaller writes.

25nm+penny.jpg

A 25nm flash memory die. Note the support logic (CMOS) along the upper left edge.

One final thing helping out Micron here is that their Floating Gate design also enables a shift of 75% of the CMOS circuitry to a layer *underneath* the flash storage array. This logic is typically part of what you see 'off to the side' of a flash memory die. Layering CMOS logic in such a way is likely thanks to Intel's partnership and CPU development knowledge. Moving this support circuitry to the bottom layer of the die makes for less area per die dedicated to non-storage, more dies per wafer, and ultimately lower cost per chip/GB.

progression slide.png

Samsung's Charge Trap Flash, shown in both planar and 3D VNAND forms.

One final thing before we go. If we know anything about how the Intel / Micron duo function, it is that once they get that freight train rolling, it leads to relatively rapid advances. In this case, the changeover to 3D has taken them a while to perfect, but once production gains steam, we can expect to see some *big* advances. Since Samsung launched their 3D VNAND their gains have been mostly iterative in nature (24, 32, and most recently 48). I'm not yet at liberty to say how the second generation of IMFT 3D NAND will achieve it, but I can say that it appears the next iteration after this 32-layer 256Gb (MLC) /384Gb (TLC) per die will *double* to 512Gb/768Gb (you are free to do the math on what that means for layer count). Remember back in the day where Intel launched new SSDs at a fraction of the cost/GB of the previous generation? That might just be happening again within the next year or two.

OCZ Launches Trion 150, Successor to Trion 100 SATA SSD, Now Using 15nm Flash

Subject: Storage | February 3, 2016 - 03:31 PM |
Tagged: Trion 150, toshiba, tlc, ssd, slc, sata, ocz, A15nm

*Note* This piece originally stated 'A15nm', however this was an error in the Trion 150 spec sheet at OCZ. It has been corrected in this article (as well as at the OCZ web site).

2015 was a bit of a rough year for OCZ, as their integration with parent company Toshiba ran into a few performance bumps in the road. First was the Vector 180 launch, which saw some particularly troublesome stalls during writes and TRIM operations. The Trion 100 launch went a bit smoother, but we did note some inconsistencies in caching performance of those TLC/SLC caching SSDs.

OCZ hopes to turn things around by kicking off 2016 with some updates to their product lines. First up is the just announced Trion 150:

trion150_lrg_sp.png

Looking at the spec sheets of the Trion 100 and 150, it may be difficult to spot any differences. I’ll save you the trouble and say that only *one digit* changes, but it is an important one. The Trion 150 will use Toshiba 15nm TLC flash (the Trion 100 used A19nm). What is interesting about this is that the Trion 150 carries the same endurance rating as its predecessor. A flash memory die shrink typically comes with a corresponding reduction in endurance, so it is good to see Toshiba squeeze this likely last die shrink to their planar flash for all of the endurance they can. Further backing up that endurance claim, the Trion 150 will carry OCZ’s ShieldPlus warranty, which offers shipping-paid advance-RMA (without receipt) of this product line for three years!

OCZ has Trion 150 samples on the way to us, and we will get a full performance review of them up as soon as we can! Full press blast follows after the break.

Source: OCZ

Fixstars Launches 13TB 2.5" SATA SSD Geared Towards Media Streaming

Subject: Storage | January 13, 2016 - 09:57 PM |
Tagged: ssd, sata, Fixstars, 13TB

Got a high bandwidth video camera that fills a piddly 4TB SSD in too short of a time? How about a 13TB SSD!

ssd-pinot2-15mm-for-press.png

Fixstars certainly gets cool points for launching such a high capacity SSD, but there are a few things to consider here. These are not meant to be written in a random fashion and are primarily geared towards media creation (8k RAW video). Filling at saturated SATA bandwidth, these will take about 7 hours to fill, and just as long to empty onto that crazy high end editing machine. But hey, if you can afford 13TB of flash (likely ~$13,000) just to record your video content, then your desktop should be even beefier.

The take home point here is that this is not a consumer device, and it would not work out well even for pro gamers with money to burn. The random write performance is likely poor enough that it could not handle a Steam download over a high end broadband link.

Full press blast after the break.

Source: Fixstars