Run Windows on Intel's Galileo

Subject: General Tech | August 20, 2014 - 12:35 PM |
Tagged: galileo, Intel, windows, SoC

Intel's first generation low powered SoC which goes by the name of Galileo and is powered by a 400MHz Quark X1000 is now capable of running Windows with the help of the latest firmware update.  Therefore if you are familiar enough with their tweaked Arduino IDE you should be able to build a testbed for low powered machines that will be running Windows.  You will want to have some time on hand, loading Windows to the microSD card can take up to two hours and those used to SSDs will be less than impressed with the boot times.  For developers this is not an issue and well worth the wait as it gives them a brand new tool to work with.  Pop by The Register for the full details of the firmware upgrade and installation process.

galileo_1.jpg

"Windows fans can run their OS of choice on Intel’s counter to Raspberry Pi, courtesy of an Intel firmware update."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

Panasonic ARMs will be fabbed at Intel

Subject: General Tech | July 8, 2014 - 01:40 PM |
Tagged: SoC, Panasonic, Intel, arm

Intel has been fabbing ARM chips for Altera since the end of last year after their unprecedented move of allowing non-Intel designs into their fabs.  This decision allowed Intel to increase the percentage of time the fabs were active, as they are no longer able to keep them at full capacity with their own chips and have even mothballed the new Fab 42 in Arizona.  Altera is a good customer, as are Tabula, Netronome and Microsemi but together they are still not enough to bring Intel's capacity close to 100%.  The Register has reported on a new contract with the ink still wet from signing; Panasonic will now be using Intel's Fabs for their ARM based SoCs.   The immense size of Panasonic should keep Intel busy and ensure that they continue to make mountains of money licensing their 14nm-process tri-Gate transistors as well as the Fab time.

panasonic-large1.jpg

"Intel has notched up another customer for its fledgling Foundry business as it tries to make money out of its manufacturing and engineering expertise besides x86 processor sales.

The world's most valuable chip manufacturer said on Monday that Panasonic's audio-visual gear will make future system-on-chips (SoCs) in Intel's factories."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register

Intel Announces "Cars Are Things" - with New Automotive Platform

Subject: General Tech | May 30, 2014 - 10:21 AM |
Tagged: SoC, linux, internet of things, Intel, automotive, automation, atom

Imagine: You get into the family car and it knows that it’s you, so it adjusts everything just the way you like it. You start driving and your GPS is superimposed over the road in real time from within your windshield, with virtual arrows pointing to your next turn. Kids play games on their touchscreen windows in the back, and everyone travels safely as their cars anticipate accidents...

Sound far-fetched? Work is already being done to make things like these a reality, and Intel has now announced their stake in the future of connected, and eventually autonomous, automobiles.

IMG_20140530_101730.jpg

Intel's new automotive computing platform

Ensuring that every device in our lives is always connected seems like the goal of many companies going forward, and the “Internet of Things” is a very real, and rapidly growing, part of the business world. Intel is no exception, and since cars are things (as I’ve been informed) it makes sense to look in this area as well, right? Well, Intel has announced development of their automotive initiative, with the overall goal to create safer - and eventually autonomous - cars. Doug Davis, Corporate VP, Internet of Things Group at Intel, hosted the online event, which began with a video depicting automotive travel in a fully connected world. It doesn’t seem that far away...

"We are combining our breadth of experience in consumer electronics and enterprise IT with a holistic automotive investment across product development, industry partnerships and groundbreaking research efforts,” Davis said. “Our goal is to fuel the evolution from convenience features available in the car today to enhanced safety features of tomorrow and eventually self-driving capabilities.”

IMG_20140530_114529.jpg

So how exactly does this work? The tangible element of Intel’s vision of connected, computer controlled vehicles begins with the In-Vehicle Solutions Platform which provides Intel silicon to automakers. And as it’s an “integrated solution” Intel points out that this should cut time and expense from the current, more complex methods employed in assembling automotive computer systems. Makes sense, since they are delivering a complete Intel Atom based system platform, powered by the E3800 processor. The OS is Tizen IVI ("automotive grade" Linux). A development kit was also announced, and there are already companies creating systems using this platform, according to Intel.

Source: Intel

Intel Announces Partnership with Rockchip to Produce Low-Cost x86 Atom SoC

Subject: Processors | May 28, 2014 - 05:09 PM |
Tagged: tablet, SoC, Rockchip, mobile, Intel, atom, arm, Android

While details about upcoming Haswell-E processors were reportedly leaking out, an official announcement from Intel was made on Tuesday about another CPU product - and this one isn't a high-end desktop part. The chip giant is partnering with the fabless semiconductor manufacturer Rockchip to create a low-cost SoC for Android devices under the Intel name, reportedly fabricated at TSMC.

rockchip_logo.png

We saw almost exactly the opposite of this arrangement last October, when it was announced that Altera would be using Intel to fab ARMv8 chips. Try to digest this: Instead of Intel agreeing to manufacture another company's chip with ARM's architecture in their fabs, they are going through what is said to be China's #1 tablet SoC manufacturer to produce x86 chips...at TSMC? It's a small - no, a strange world we live in!

From Intel's press release: "Under the terms of the agreement, the two companies will deliver an Intel-branded mobile SoC platform. The quad-core platform will be based on an Intel® Atom™ processor core integrated with Intel's 3G modem technology."

As this upcoming x86 SoC is aimed at entry-level Android tablets this announcement might not seem to be exciting news at first glance, but it fills a short term need for Intel in their quest for market penetration in the ultramobile space dominated by ARM-based SoCs. The likes of Qualcomm, Apple, Samsung, TI, and others (including Rockchip's RK series) currently account for 90% of the market, all using ARM.

As previously noted, this partnership is very interesting from an industry standpoint, as Intel is sharing their Atom IP with Rockchip to make this happen. Though if you think back, the move is isn't unprecedented... I recall something about a little company called Advanced Micro Devices that produced x86 chips for Intel in the past, and everything seemed to work out OK there...

atom.png

When might we expect these new products in the Intel chip lineup codenamed SoFIA? Intel states "the dual-core 3G version (is) expected to ship in the fourth quarter of this year, the quad-core 3G version...expected to ship in the first half of 2015, and the LTE version, also due in the first half of next year." And again, this SoC will only be available in low-cost Android tablets under this partnership (though we might speculate on, say, an x86 SoC powered Surface or Ultrabook in the future?).

Source: Intel

Qualcomm Reveals New Flagship Snapdragon 808 and 810 64-Bit SoCs Coming In 2015

Subject: Mobile | April 8, 2014 - 07:47 PM |
Tagged: SoC, snapdragon, qualcomm, LTE, ARMv8, adreno, 64-bit

Qualcomm has announced two new flagship 64-bit SoCs with the Snapdragon 808 and Snapdragon 810. The new chips will begin sampling later this year and should start showing up in high end smartphones towards the second half of 2015. The new 800-series parts join the previously announced mid-range Snapdragon 610 and 615 which are also 64-bit ARMv8 parts.

The Snapdragon 810 is Qualcomm's new flagship processor. The chip features four ARM Cortex A57 cores and four Cortex A53 cores in a big.LITTLE configuration, an Adreno 430 GPU, and support for Category 6 LTE (up to 300 Mbps downloads) and LPDDR4 memory. This flagship part uses the 64-bit ARMv8 ISA. The new Adreno 430 GPU integrated in the SoC is reportedly 30% faster than the Adreno 420 GPU in the Snapdragon 805 processor.

Qualcomm Snapdragon SoC.jpg

In addition to the flagship part, Qualcomm is also releasing the Snapdragon 808 which pairs two Cortex A57 CPU cores and four Cortex A53 CPU cores in a big.LITTLE configuration with an Adreno 418 (approximately 20% faster than the popular Adreno 320) GPU. This chip supports LPDDR3 memory and Qualcomm's new Category 6 LTE modem.

Both the 808 and 810 have Adreno GPUs which support OpenGL ES 3.1. The new chips support a slew of wireless I/O including Categrory 6 LTE, 802.11ac Wi-Fi, Bluetooth 4.1, and NFC.

Qualcomm is reportedly planning to produce these SoCs on a 20nm process. For reference, the mid-range 64-bit Snapdragon 610 and 615 use a 28nm LP manufacturing process. The new 20nm process (presumably from TSMC) should enable improved battery life and clockspeed headroom on the flagship parts. Exactly how big the mentioned gains will be will depend on the specific manufacturing process, with smaller gains from a bulk/planar process shrink or greater improvements coming from more advanced methods such as FD-SOI if the new chip on a 20nm process is the same transistor count as one on a 28nm process (which is being used in existing chips).

The 808 and 810 parts are the new high-end 64-bit chips which will effectively supplant the 32-bit Snapdragon 805 which is a marginal update over the Snapdragon 800. The naming conventions and product lineups are getting a bit crazy here, but suffice it to say that the 808 and 810 are the effective successors to the 800 while the 805 is a stop-gap upgrade while Qualcomm moves to 64-bit ARMv8 and secures manufacturing for the new chips which should be slightly faster CPU-wise, notably faster GPU-wise and more capable with the faster cellular modem support and 64-bit ISA support.

For those wondering, the press release also states that the company is still working on development of its custom 64-bit Krait CPU architecture. However, it does not appear that 64-bit Krait will be ready by the first half of 2015, which is why Qualcomm has opted to use ARM's Cortex A57 and A53 cores in its upcoming flagship 808 and 810 SoCs.

Source: Qualcomm

More Intel Inside Chromebooks

Subject: General Tech | April 3, 2014 - 03:19 PM |
Tagged: Braswell, Bay Trail, Intel, SoC, 14nm, idf

Intel's Atom has finally shaken the bad name that its progenitors have born as Bay Trail proves to be a great implementation of an SoC.  At IDF we received a tantalizing glimpse at the next generation of SoC from Intel, the 14nm Braswell chip though little was said of their ultra low powered Cherry Trail SoC for tablets.   Braswell is more than just a process shrink, Intel is working to increase their support of Chromebooks and Android by creating a 64-bit Android kernel that supports Android 4.4.  This seems to have paid off as Kirk Skaugen mentioned to The Inquirer that Intel chips will be present in 20 soon to be released models, up from 4 currently.

intelbroadwell.jpg

"INTEL HAS REVEALED PLANS to launch Braswell, a more powerful successor to the Bay Trail system on a chip (SoC) line used in low-cost devices like Chromebooks and budget PCs."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

ASRock Unveils New AM1 Platform Motherboards For Socketed Kabini SoCs

Subject: Motherboards | March 6, 2014 - 01:33 AM |
Tagged: SoC, mini ITX, micro ATX, Kabini, FS1B, asrock, AM1

ASRock has joined the AM1 Platform fray with three of its own FS1B socketed motherboards: the AM1B-M, AM1B-ITX, and AM1H-ITX. The new motherboards come in Mini ITX and Micro ATX form factors that support all of Kabini’s I/O options including USB 3.0, SATA III, and PCI-E 2.0 connections.

ASRock AM1B-ITX(m).jpg

The two mini ITX motherboards (the AM1B-ITX and AM1H-ITX) feature a FS1B SoC socket, two DDR3 DIMM slots, four SATA III 6Gbps ports, and a single PCI-E 2.0 x16 slot running at PCI-E 2.0 x4. ASRock is using two SATA III ports from the Kabini SoC and two SATA III ports from an ASMedia ASM1061 chipset. Both boards utilize the Realtek RTL8111GR NIC to provide gigabit Ethernet.

ASRock AM1H-ITX(m).jpg

The AM1H-ITX board builds upon the features of the AM1B-ITX by adding a mini PCI-E connector. While the AM1B-ITX uses a 5.1 channel Realtek ALC662 chipset, the AM1H-ITX uses a 7.1 channel ALC892 chipset that supports both analog and optical S/PDIF outputs.

Beyond the mini ITX boards, ASRock is launching the micro ATX AM1B-M. This board features the FS1B Kabini SoC socket, two DDR3 DIMM slots (16GB @ 1600MHz), two SATA III 6Gbps ports, a PCI-E 2.0 x16 slot (running at x4), and a PCI-E x1 slot. The board further offers Gigabit Ethernet and 5.1 channel audio. Noticeably absent is the additional ASMedia chipset that adds two SATA III ports.

ASRock AM1B-M(m).jpg

Additionally, the three boards have internal headers for extra USB ports and TPM security chips (the exact configuration of which depends on the specific board). The table below breaks down the basic differences between the boards.

  ASRock AM1B-M ASRock AM1B-ITX ASRock AM1H-ITX
Memory 2 x DDR3 (16GB @ 1600MHz) 2 x DDR3 (16GB @ 1600MHz) 2 x DDR3 (16GB @ 1600MHz)
Expansion Slots

1 x PCI-E 2.0 x16 (@ x 4)

1 x PC-E 2.0 x1 (@ x 1)

1 x PCI-E 2.0 x16 (@ x 4)

1 x PCI-E 2.0 x16

1 x mPCI-E

Storage 2 x SATA III

2 x SATA III from Kabini SoC

2 x SATA III from ASMedia ASM1061

2 x SATA III from Kabini SoC

2 x SATA III from ASMedia ASM1061

Networking Realtek RTL8111GR
Audio Realtek ALC662 Realtek ALC662 Realtek ALC892
Rear IO
  • 1 x PS/2
  • 1 x VGA
  • 4 x USB 2.0
  • 2 x USB 3.0
  • 1 x RJ45
  • 3 x analog audio
  • 1 x PS/2
  • 1 x Parallel
  • 1 x VGA
  • 1 x DVI
  • 1 x HDMI
  • 2 x USB 2.0
  • 2 x USB 3.0
  • 1 x RJ45
  • 3 x analog audio
  • 1 x PS/2
  • 1 x VGA
  • 1 x HDMI
  • 1 x DVI
  • 1 x DisplayPort
  • 2 x USB 2.0
  • 3 x USB 3.0
  • 1 x RJ45
  • 1 x Optical S/PDIF
  • 5 x analog audio

 

As with the other AMD hardware partners, ASRock has not released pricing or availability information. You can expect the micro ATX to be the cheapest of the bunch, with the two mini ITX boards commanding a slight premium for their reduced size and bolstered I/O options. The boards with four SATA III ports would make for great home server options by not requiring a PCI-E card to connect more than two SATA drives. The boards will support Athlon and Sempron branded AMD Kabini SoCs, and the combination of a board and SoC will cost approximately $60 according to AMD.

While the AM1 Platform is restricted to single channel memory (a Kabini memory controller limitation) versus Bay Trail's dual channel memory support, the AM1 Platform offers SATA 6Gbps and a GCN-based graphics part. Bay Trail may have a leg up in memory bandwidth and TDPs, socketed Kabini offers more storage bandwidth and graphics performance. I'm interested to see how the two platform stack up, and what the new boards are able to do.

Also read: AMD Releases the AM1 Platform: Socketed Kabini APU

Source: ASRock

MSI Launches AM1I Mini ITX Motherboard For Socketed Kabini SoCs

Subject: Motherboards | March 5, 2014 - 11:35 PM |
Tagged: SoC, msi, mini ITX, Kabini, FS1B, AM1

MSI recently introduced its first motherboard based around AMD’s new AM1 platfrom called the AM1I. The new board uses the mini ITX form factor while supporting a Kabini SoC and all of its IO options including SATA III, USB 3, Gigabit Ethernet, and triple display outputs.

The AM1I sports a FS1B CPU socket, two DDR3 DIMM slots (a maximum of 32GB single channel memory at 1600MHz), two SATA III 6Gbps ports, a single PCI-E 2.0 x16 slot (electrically x4), and a single mPCI-E connector. The mini ITX AM1I motherboard further features a TPM connector, 7.1 channel Realtek ALC887 audio chipset, and a Realtek RTL8111G Gigabit Ethernet controller.

MSI AM1I Mini ITX Motherboard For AM1 Platform and Socketed Kabini SoCs.jpg

The AM1 Platform uses the FS1B socket and a new cooler mounting system (though the boards spotted at CES used a traditional FM2/AM3 HSF mount). So far, it appears the only heatsinks available will be those bundled with Kabini chips in retail boxes.

The rear I/O panel of the AM1I includes:

  • 2 x PS/2
  • 3 x Video outputs
    • 1 x HDMI
    • 1 x DVI
    • 1 x VGA
  • 2 x USB 3.0
  • 2 x USB 2.0
  • 1 x RJ45 (GbE)
  • 3 x analog audio outputs

MSI has not released exact pricing or availability, but expect the board to arrive sometime in mid-April for well under $40 (AMD has stated that the AM1 platform (FS1B motherboard plus a Kabini SoC) will cost around $60). Note that AM1 platform boards are extremely low cost because the IO is contained within the Kabini chip and not by on-motherboard chipsets.

Source: MSI

Samsung Releases 8-Core and 6-Core 32-Bit Exynos 5 SoCs

Subject: Processors | February 26, 2014 - 11:46 PM |
Tagged: SoC, Samsung, exynos 5, big.little, arm, 28nm

Samsung recently announced two new 32-bit Exynos 5 processors with the eight core Exynos 5 Octa 5422 and six core Exynos 5 Hexa 5260. Both SoCs utilize a combination of ARM Cortex-A7 and Cortex-A15 CPU cores along with ARM's Mali graphics. Unlike the previous Exynos 5 chips, the upcoming processors utilize a big.LITTLE configuration variant called big.LITTLE MP that allows all CPU cores to be used simultaneously. Samsung continues to use a 28nm process node, and the SoCs should be available for use in smartphones and tablets immediately.

The Samsung Exynos 5 Octa 5422 offers up eight CPU cores and an ARM Mali T628 MP6 GPU. The CPU configuration consists of four Cortex-A15 cores clocked at 2.1GHz and four Cortex-A7 cores clocked at 1.5GHz. Devices using this chip will be able to tap up to all eight cores at the same time for demanding workloads, allowing the device to complete the computations and return to a lower-power or sleep state sooner. Devices using previous generation Exynos chips were faced with an either-or scenario when it came to using the A15 or A7 groups of cores, but the big.LITTLE MP configuration opens up new possibilites.

Samsung Exynos 5 Hexa 5260.jpg

While the Octa 5422 occupies the new high end for the lineup, the Exynos 5 Hexa 5260 is a new midrange chip that is the first six core Exynos product. This chip uses an as-yet-unnamed ARM Mali GPU along with six ARM cores. The configuration on this SoC is four low power Cortex-A7 cores clocked at 1.3GHz paired with two Cortex-A15 cores clocked at 1.7GHz. Devices can use all six cores at a time or more selectively. The Hexa 5260 offers up two higher powered cores for single threaded performance along with four power sipping cores for running background tasks and parallel workloads.

The new chips offer up access to more cores for more performance at the cost of higher power draw. While the additional cores may seem like overkill for checking email and surfing the web, the additional power can enable things like onboard voice recognition, machine vision, faster photo filtering and editing, and other parallel-friendly tasks. Notably, the GPU should be able to assist with some of this parallel processing, but GPGPU is still relatively new whereas developers have had much more time to familiarize themselves with and optimize applications for multiple CPU threads. Yes, the increasing number of cores lends itself well to marketing, but that does not preclude them from having real world performance benefits and application possibilities. As such, I'm interested to see what these chips can do and what developers are able to wring out of them.

Source: Ars Technica

Intel Roadmap Including Xeon E7 v2 Lineup

Subject: General Tech, Processors, Mobile | February 19, 2014 - 03:28 AM |
Tagged: Intel, SoC, atom, haswell, Haswell-E, Airmont, Ivy Bridge-EX

Every few months, we get another snapshot at some of Intel's products. This timeline has a rough placement for every segment, from their Internet of Things (IoT) product, the Quark, up to the Xeon E7 v2. While it covers from now through December, it is not designed to be a strict schedule and might contain an error or two.

intel-2014-roadmap.jpg

Image Credit: VR-Zone

First up is Ivy Bridge-EX (Xeon E7 v2). PCMag has an interesting rundown on these parts in depth, although some aspects are a little fuzzy. These 22nm-based chips range from 6 to 15 cores and can access up to 1.5TB of memory, per socket. Intel also claims they will support up to four times the I/O bandwidth for disk and network transactions. Naturally, they have all the usual virtualization and other features that are useful for servers. Most support Turbo Boost and all but one have Hyper-Threading Technology.

Jumping back to the VR-Zone editorial, the timeline suggests that the Quark X1000 will launch in April. As far as I can tell, this is new information. Quark is Intel's ultra low-end SoC that is designed for adding intelligence to non-computing devices. One example given by Intel at CES was a smart baby bottle warmer.

The refresh of Haswell is also expected to happen in April.

Heading into the third quarter, we should see Haswell-E make an appearance for the enthusiast desktop and moderately high-end server. This should be the first time since Sandy Bridge-E (2011) that expensive PCs get a healthy boost to single-threaded performance, clock for clock. Ivy Bridge-E, while a welcome addition, was definitely aimed at reducing power consumption.

Ending the year should be the launch of Airmont at 14nm. The successor to Silvermont, Airmont will be the basis of Cherry Trail tablets and lower end PCs at the very end of the year. Moorefield, which is Airmont for smartphones, is not listed on this roadmap and should not surface until 2015.

Source: VR-Zone