Subject: Mobile
Manufacturer: Lenovo

Introduction and Design

P4212143.jpg

While Lenovo hasn’t historically been known for its gaming PCs, it’s poised to make quite a splash with the latest entry in its IdeaPad line. Owing little to the company’s business-oriented roots, the Y500 aims to be all power—moreso than any other laptop from the manufacturer to date—tactfully squeezed into a price tag that would normally be unattainable given the promised performance. But can it succeed?

Our Y500 review unit can be had for $1,249 at Newegg and other retailers, or for as low as $1,180 at Best Buy. Lenovo also sells customizable models, though the price is generally higher. Here’s the full list of specifications:

specs.png

The configurations offered by Lenovo range in price fairly widely, from as low as $849 for a model sporting 8 GB of RAM with a single GT 650M with 2 GB GDDR5. The best value is certainly this configuration that we received, however.

What’s so special about it? Well, apart from the obvious (powerful quad-core CPU and 16 GB RAM), this laptop actually includes two NVIDIA GeForce GT 650M GPUs (both with 2 GB GDDR5) configured in SLI. Seeing as it’s just a 15.6-inch model, how does it manage to do that? By way of a clever compromise: the exchange of the usual optical drive for an Ultrabay, something normally only seen in Lenovo’s ThinkPad line of laptops. So I guess the Y500 does owe a little bit of its success to its business-grade brethren after all.

P4212175.jpg

In our review unit (and in the particular configuration noted above), this Ultrabay comes prepopulated with the second GT 650M, equipped with its own heatsink/fan and all. The addition of this GPU effectively launches the Y500 into high-end gaming laptop territory—at least on the spec sheet. Other options for the Ultrabay also exist (sold separately), including a DVD burner and a second hard drive. The bay is easily removable via a switch on the back of the PC (see below).

P4212148.jpg

Continue Reading our review of the Lenovo IdeaPad Y500!

Author:
Manufacturer: Various

A very early look at the future of Catalyst

Today is a very interesting day for AMD.  It marks both the release of the reference design of the Radeon HD 7990 graphics card, a dual-GPU Tahiti behemoth, and the first sample of a change to the CrossFire technology that will improve animation performance across the board.  Both stories are incredibly interesting and as it turns out both feed off of each other in a very important way: the HD 7990 depends on CrossFire and CrossFire depends on this driver. 

If you already read our review (or any review that is using the FCAT / frame capture system) of the Radeon HD 7990, you likely came away somewhat unimpressed.  The combination of a two AMD Tahiti GPUs on a single PCB with 6GB of frame buffer SHOULD have been an incredibly exciting release for us and would likely have become the single fastest graphics card on the planet.  That didn't happen though and our results clearly state why that is the case: AMD CrossFire technology has some serious issues with animation smoothness, runt frames and giving users what they are promised. 

Our first results using our Frame Rating performance analysis method were shown during the release of the NVIDIA GeForce GTX Titan card in February.  Since then we have been in constant talks with the folks at AMD to figure out what was wrong, how they could fix it, and what it would mean to gamers to implement frame metering technology.  We followed that story up with several more that showed the current state of performance on the GPU market using Frame Rating that painted CrossFire in a very negative light.  Even though we were accused by some outlets of being biased or that AMD wasn't doing anything incorrectly, we stuck by our results and as it turns out, so does AMD. 

Today's preview of a very early prototype driver shows that the company is serious about fixing the problems we discovered. 

If you are just catching up on the story, you really need some background information.  The best place to start is our article published in late March that goes into detail about how game engines work, how our completely new testing methods work and the problems with AMD CrossFire technology very specifically.  From that piece:

It will become painfully apparent as we dive through the benchmark results on the following pages, but I feel that addressing the issues that CrossFire and Eyefinity are creating up front will make the results easier to understand.  We showed you for the first time in Frame Rating Part 3, AMD CrossFire configurations have a tendency to produce a lot of runt frames, and in many cases nearly perfectly in an alternating pattern.  Not only does this mean that frame time variance will be high, but it also tells me that the value of performance gained by of adding a second GPU is completely useless in this case.  Obviously the story would become then, “In Battlefield 3, does it even make sense to use a CrossFire configuration?”  My answer based on the below graph would be no.

runt.jpg

An example of a runt frame in a CrossFire configuration

NVIDIA's solution for getting around this potential problem with SLI was to integrate frame metering, a technology that balances frame presentation to the user and to the game engine in a way that enabled smoother, more consistent frame times and thus smoother animations on the screen.  For GeForce cards, frame metering began as a software solution but was actually integrated as a hardware function on the Fermi design, taking some load off of the driver.

Continue reading our article on the new prototype driver from AMD to address frame pacing issues in CrossFire!!

Author:
Manufacturer: PC Perspective

What to look for and our Test Setup

Because of the complexity and sheer amount of data we have gathered using our Frame Rating performance methodology, we are breaking it up into several articles that each feature different GPU comparisons.  Here is the schedule:

 

Today marks the conclusion of our first complete round up of Frame Rating results, the culmination of testing that was started 18 months ago.  Hopefully you have caught our other articles on the subject at hand, and you really will need to read up on the Frame Rating Dissected story above to truly understand the testing methods and results shown in this article.  Use the links above to find the previous articles!

To round out our Frame Rating testing in this interation, we are looking at more cards further down the product stack in two different sets.  The first comparison will look at the AMD Radeon HD 7870 GHz Edition and the NVIDIA GeForce GTX 660 graphics cards in both single and dual-card configurations.  Just like we saw with our HD 7970 vs GTX 680 and our HD 7950 vs GTX 660 Ti testing, evaluating how the GPUs compare in our new and improved testing methodology in single GPU configurations is just as important as testing in SLI and CrossFire.  The GTX 660 ($199 at Newegg.com) and the HD 7870 ($229 at Newegg.com) are the closest matches in terms of pricing though both card have some interesting game bundle options as well.

7870.jpg

AMD's Radeon HD 7870 GHz Edition

Our second set of results will only be looking at single GPU performance numbers for lower cost graphics cards like the AMD Radeon HD 7850 and Radeon HD 7790 and from NVIDIA the GeForce GTX 650 Ti and GTX 650 Ti BOOST.  We didn't include multi-GPU results on these cards simply due to time constraints internally and because we are eager to move onto further Frame Rating testing and input testing. 

gtx660.jpg

NVIDIA's GeForce GTX 660


If you are just joining this article series today, you have missed a lot!  If nothing else you should read our initial full release article that details everything about the Frame Rating methodology and why we are making this change to begin with.  In short, we are moving away from using FRAPS for average frame rates. We are using a secondary hardware capture system to record each frame of game play as the monitor would receive them. That recorded video is then analyzed to measure real world performance.

Because FRAPS measures frame times at a different point in the game pipeline (closer to the game engine) its results can vary dramatically from what is presented to the end user on their display.  Frame Rating solves that problem by recording video through a dual-link DVI capture card that emulates a monitor to the testing system and by simply applying a unique overlay color on each produced frame from the game, we can gather a new kind of information that tells a very unique story.

card1.jpg

The capture card that makes all of this work possible.

I don't want to spend too much time on this part of the story here as I already wrote a solid 16,000 words on the topic in our first article and I think you'll really find the results fascinating.  So, please check out my first article on the topic if you have any questions before diving into these results today!

Test System Setup
CPU Intel Core i7-3960X Sandy Bridge-E
Motherboard ASUS P9X79 Deluxe
Memory Corsair Dominator DDR3-1600 16GB
Hard Drive OCZ Agility 4 256GB SSD
Sound Card On-board
Graphics Card NVIDIA GeForce GTX 660 2GB
AMD Radeon HD 7870 2GB
NVIDIA GeForce GTX 650 Ti 1GB
NVIDIA GeForce GTX 650 Ti BOOST 2GB
AMD Radeon HD 7850 2GB
AMD Radeon HD 7790 1GB
Graphics Drivers AMD: 13.2 beta 7
NVIDIA: 314.07 beta
Power Supply Corsair AX1200i
Operating System Windows 8 Pro x64

On to the results! 

Continue reading our review of the GTX 660 and HD 7870 using Frame Rating!!

What to Look For, Test Setup

Because of the complexity and sheer amount of data we have gathered using our Frame Rating performance methodology, we are breaking it up into several articles that each feature different GPU comparisons.  Here is the schedule:

We are back again with another edition of our continued reveal of data from the capture-based Frame Rating GPU performance methods.  In this third segment we are moving on down the product stack to the NVIDIA GeForce GTX 660 Ti and the AMD Radeon HD 7950 - both cards that fall into a similar price range.

gtx660ti.JPG

I have gotten many questions about why we are using the cards in each comparison and the answer is pretty straight forward: pricing.  In our first article we looked at the Radeon HD 7970 GHz Edition and the GeForce GTX 680 while in the second we compared the Radeon HD 7990 (HD 7970s in CrossFire), the GeForce GTX 690 and the GeForce GTX Titan.  This time around we have the GeForce GTX 660 Ti ($289 on Newegg.com) and the Radeon HD 7950 ($299 on Newegg.com) but we did not include the GeForce GTX 670 because it sits much higher at $359 or so.  I know some of you are going to be disappointed that it isn't in here, but I promise we'll see it again in a future piece!


If you are just joining this article series today, you have missed a lot!  If nothing else you should read our initial full release article that details everything about the Frame Rating methodology and why we are making this change to begin with.  In short, we are moving away from using FRAPS for average frame rates or even frame times and instead are using a secondary hardware capture system to record all the frames of our game play as they would be displayed to the gamer, then doing post-process analyzation on that recorded file to measure real world performance.

Because FRAPS measures frame times at a different point in the game pipeline (closer to the game engine) its results can vary dramatically from what is presented to the end user on their display.  Frame Rating solves that problem by recording video through a dual-link DVI capture card that emulates a monitor to the testing system and by simply applying a unique overlay color on each produced frame from the game, we can gather a new kind of information that tells a very unique story.

card1.jpg

The capture card that makes all of this work possible.

I don't want to spend too much time on this part of the story here as I already wrote a solid 16,000 words on the topic in our first article and I think you'll really find the results fascinating.  So, please check out my first article on the topic if you have any questions before diving into these results today!

Test System Setup
CPU Intel Core i7-3960X Sandy Bridge-E
Motherboard ASUS P9X79 Deluxe
Memory Corsair Dominator DDR3-1600 16GB
Hard Drive OCZ Agility 4 256GB SSD
Sound Card On-board
Graphics Card NVIDIA GeForce GTX 660 Ti 2GB
AMD Radeon HD 7950 3GB
Graphics Drivers AMD: 13.2 beta 7
NVIDIA: 314.07 beta
Power Supply Corsair AX1200i
Operating System Windows 8 Pro x64

 

On to the results! 

Continue reading our review of the GTX 660 Ti and HD 7950 using Frame Rating!!

Summary Thus Far

Because of the complexity and sheer amount of data we have gathered using our Frame Rating performance methodology, we are breaking it up into several articles that each feature different GPU comparisons.  Here is the schedule:

Welcome to the second in our intial series of articles focusing on Frame Rating, our new graphics and GPU performance technology that drastically changes how the community looks at single and multi-GPU performance.  In the article we are going to be focusing on a different set of graphics cards, the highest performing single card options on the market including the GeForce GTX 690 4GB dual-GK104 card, the GeForce GTX Titan 6GB GK110-based monster as well as the Radeon HD 7990, though in an emulated form.  The HD 7990 was only recently officially announced by AMD at this years Game Developers Conference but the specifications of that hardware are going to closely match what we have here on the testbed today - a pair of retail Radeon HD 7970s in CrossFire. 

titancard.JPG

Will the GTX Titan look as good in Frame Rating as it did upon its release?

If you are just joining this article series today, you have missed a lot!  If nothing else you should read our initial full release article that details everything about the Frame Rating methodology and why we are making this change to begin with.  In short, we are moving away from using FRAPS for average frame rates or even frame times and instead are using a secondary hardware capture system to record all the frames of our game play as they would be displayed to the gamer, then doing post-process analyzation on that recorded file to measure real world performance.

Because FRAPS measures frame times at a different point in the game pipeline (closer to the game engine) its results can vary dramatically from what is presented to the end user on their display.  Frame Rating solves that problem by recording video through a dual-link DVI capture card that emulates a monitor to the testing system and by simply applying a unique overlay color on each produced frame from the game, we can gather a new kind of information that tells a very unique story.

card1.jpg

The capture card that makes all of this work possible.

I don't want to spend too much time on this part of the story here as I already wrote a solid 16,000 words on the topic in our first article and I think you'll really find the results fascinating.  So, please check out my first article on the topic if you have any questions before diving into these results today!

 

Test System Setup
CPU Intel Core i7-3960X Sandy Bridge-E
Motherboard ASUS P9X79 Deluxe
Memory Corsair Dominator DDR3-1600 16GB
Hard Drive OCZ Agility 4 256GB SSD
Sound Card On-board
Graphics Card NVIDIA GeForce GTX TITAN 6GB
NVIDIA GeForce GTX 690 4GB
AMD Radeon HD 7970 CrossFire 3GB
Graphics Drivers AMD: 13.2 beta 7
NVIDIA: 314.07 beta (GTX 690)
NVIDIA: 314.09 beta (GTX TITAN)
Power Supply Corsair AX1200i
Operating System Windows 8 Pro x64

 

On to the results! 

Continue reading our review of the GTX Titan, GTX 690 and HD 7990 using Frame Rating!!

Podcast #244 - Frame Rating Launch, HD 7790 vs. GTX 650Ti BOOST, and news from GDC

Subject: General Tech | March 28, 2013 - 03:47 PM |
Tagged: sli, podcast, pcper, nvidia, kepler, HD7790, GTX 560Ti BOOST, GCN, frame rating, crossfire, amd

PC Perspective Podcast #244 - 03/28/2013

Join us this week as we discuss the launch of Frame Rating, HD 7790 vs. GTX 650Ti BOOST, and news from GDC

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

This Podcast is brought to you by MSI!

Program length: 1:19:22

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. 1:12:00 Hardware/Software Picks of the Week:
  4. 1-888-38-PCPER or podcast@pcper.com
  5. Closing/outro

 

How Games Work

 

Because of the complexity and sheer amount of data we have gathered using our Frame Rating performance methodology, we are breaking it up into several articles that each feature different GPU comparisons.  Here is the schedule:

 

Introduction

The process of testing games and graphics has been evolving even longer than I have been a part of the industry: 14+ years at this point. That transformation in benchmarking has been accelerating for the last 12 months. Typical benchmarks test some hardware against some software and look at the average frame rate which can be achieved. While access to frame time has been around for nearly the full life of FRAPS, it took an article from Scott Wasson at the Tech Report to really get the ball moving and investigate how each frame contributes to the actual user experience. I immediately began research into testing actual performance perceived by the user, including the "microstutter" reported by many in PC gaming, and pondered how we might be able to test for this criteria even more accurately.

The result of that research is being fully unveiled today in what we are calling Frame Rating – a completely new way of measuring and validating gaming performance.

The release of this story for me is like the final stop on a journey that has lasted nearly a complete calendar year.  I began to release bits and pieces of this methodology starting on January 3rd with a video and short article that described our capture hardware and the benefits that directly capturing the output from a graphics card would bring to GPU evaluation.  After returning from CES later in January, I posted another short video and article that showcased some of the captured video and stepping through a recorded file frame by frame to show readers how capture could help us detect and measure stutter and frame time variance. 

card4.jpg

Finally, during the launch of the NVIDIA GeForce GTX Titan graphics card, I released the first results from our Frame Rating system and discussed how certain card combinations, in this case CrossFire against SLI, could drastically differ in perceived frame rates and performance while giving very similar average frame rates.  This article got a lot more attention than the previous entries and that was expected – this method doesn’t attempt to dismiss other testing options but it is going to be pretty disruptive.  I think the remainder of this article will prove that. 

Today we are finally giving you all the details on Frame Rating; how we do it, what we learned and how you should interpret the results that we are providing.  I warn you up front though that this is not an easy discussion and while I am doing my best to explain things completely, there are going to be more questions going forward and I want to see them all!  There is still much to do regarding graphics performance testing, even after Frame Rating becomes more common. We feel that the continued dialogue with readers, game developers and hardware designers is necessary to get it right.

Below is our full video that features the Frame Rating process, some example results and some discussion on what it all means going forward.  I encourage everyone to watch it but you will definitely need the written portion here to fully understand this transition in testing methods.  Subscribe to your YouTube channel if you haven't already!

Continue reading our analysis of the new Frame Rating performance testing methodology!!

Podcast #240 - GTX TITAN Benchmarks, Frame Rating, Tegra 4 Details and more!

Subject: General Tech | February 28, 2013 - 03:45 PM |
Tagged: video, titan, sli, R5000, podcast, nvidia, H90, H110, gtx titan, frame rating, firepro, crossfire, amd

PC Perspective Podcast #240 - 02/28/2013

Join us this week as we discuss GTX TITAN Benchmarks, Frame Rating, Tegra 4 Details and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath and Allyn Malventano

This Podcast is brought to you by MSI!

Program length: 1:24:28

Podcast topics of discussion:

  1. 0:01:18 PCPer Podcast BINGO!
  2. Week in Reviews:
    1. 0:03:00 GeForce GTX TITAN Performance Review
    2. 0:21:55 Frame Rating Part 3: First Results from the New GPU Performance Tools
    3. 0:38:00 Corsair Hydro Series H90 and H110 140mm Liquid Cooler Review
  3. 0:40:30 This Podcast is brought to you by MSI!
  4. News items of interest:
    1. 0:41:45 New Offices coming for NVIDIA
    2. 0:45:00 Chromebook Pixel brings high-res to high-price
    3. 0:48:00 GPU graphics market updates from JPR
    4. 0:55:45 Tegra 4 graphics details from Mobile World Congress
    5. 1:01:00 Unreal Engine 4 on PS4 has reduced quality
    6. 1:04:10 Micron SAS SSDs
    7. 1:08:25 AMD FirePro R5000 PCoIP Card
  5. Closing:
    1. 1:13:35 Hardware / Software Pick of the Week
      1. Ryan: NOT this 3 port HDMI switch
      2. Jeremy: Taxidermy + PICAXE, why didn't we think of this before?
      3. Josh: Still among my favorite headphones
      4. Allyn: Cyto
  1. 1-888-38-PCPER or podcast@pcper.com
  2. http://pcper.com/podcast
  3. http://twitter.com/ryanshrout and http://twitter.com/pcper
  4. Closing/outro

Be sure to subscribe to the PC Perspective YouTube channel!!

 

3 displays, 1 GPU

Subject: Displays | February 26, 2013 - 06:26 PM |
Tagged: eyefinity, nvidia surround, crossfire, sli

If you are going to set up a multimonitor display at 5760x1200 or 5040x1050, but only have a single GPU or a pair of low powered ones, just what kind of performance can you expect?  That is the question Techgage wanted to answer and to that purpose they tested frame rates at those resolutions with NVIDIA's GTX680 and two different 660 Ti's in SLI as well as an HD7970 and two different 7850s in Crossfire.  As you might expect the game tested makes a lot of difference in the results, with many seeing the SLI'd 660 Ti's in the lead while other memory hungry games preferred the large cache of the Radeons.  Check out the individual results of your favourite games in the full article.

TG_LCD_02_T.jpg

"Considering next-gen cards are still months away, we didn't expect to bring any more GPU reviews until the second quarter of 2013. However, we realized there was a gap in our current-gen coverage: triple-monitor gaming. In fact, it's been almost two years since we last stress tested games at resolutions of up to 7680x1600.

We're going to mix things up a little this time. Instead of using each camp's ultra-pricey dual-GPU card (or the new $999 Titan), we're going to see how more affordable Crossfire and SLI setups handle triple-monitor gaming compared to today's single-GPU flagships."

Here are some more Display articles from around the web:

Displays

Source: TechSpot

As promised, 8GB of GTX 670 SLI performance

Subject: Graphics Cards | January 22, 2013 - 03:47 PM |
Tagged: nvidia, asus, GTX 670 DirectCU II 4GB, sli

When they first tried ASUS' new GTX 670 Direct CU II with 4GB of memory on its own, [H]ard|OCP had difficulty recommending it over a 7970 but they planned to try two cards in SLI to see if that would improve the comparative performance.  The competitors are a pair of 2GB 670s, a pair of 3GB HD7970's, a pair of 2GB 680s and of course two 4GB 670s, all powering a system at 5760x1200.  Unfortunately the quote from the conclusions spells out the results "It's like putting beefy off-road tires on a Yugo", so while it will give you the ability to use some higher graphics settings, overall you are still better of with HD7970s or GTX680s.

H_SLI_ASUS670s.jpg

"We review two ASUS GeForce GTX 670 DirectCU II 4GB video cards in SLI under NV Surround resolutions. We'll answer the question as to the value and validity of 4GB of RAM on a GeForce GTX 670 GPU video card in SLI. Far Cry 3, Hitman Absolution, and all our other games will be taken to the extreme to get to the bottom of 4GB GTX 670 cards."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Source: [H]ard|OCP