The Corsair Neutron Series XT could be a mid-range contender, depending on the price

Subject: Storage | November 24, 2014 - 04:35 PM |
Tagged: ssd, sata, PS3110-S10, phison, Neutron XT, corsair, 256GB

Allyn recently reviewed the Corsair Neutron Series XT but as it is a brand new controller it is always worth a second opinion.  The Tech Report also recently tested this SSD, with its four core PS3110 controller and A19 variant of Toshiba's 19-nm MLC NAND.  Three of those cores are devoted to behind the scenes tasks such as garbage collection which should help performance when the drive starts to approach full capacity.  When testing performance they did see improvements from the first Phison controlled drive, the Force Series LS which sits at the bottom of their performance ranking.  That was not all that held back this drive, lack of support for features which have become common such as Microsoft eDrive put this drive behind the top competition and if Corsair is to make this drive a contender they are going to have to think very carefully about what the MSRP will be.

top.jpg

"Corsair's new Neutron Series XT pairs a quad-core Phison controller with Toshiba's latest MLC NAND. We've taken the 240GB version for a spin to see if it can hang with the big boys."

Here are some more Storage reviews from around the web:

Storage

Subject: Storage
Manufacturer: Corsair

Introduction, Specifications and Packaging

Introduction:

During our coverage of the Flash Memory Summit, we spotted the new Phison PS3110-S10 controller:

DSC04260.JPG

At that time we only knew that Phison was going to team up with another SSD manufacturer to get these to market. We now know that manufacturer is Corsair, and their new product is to be called the Neutron XT. How do we know this? Well, we've got one sitting right here:

DSC06034.JPG

While the Neutron has not officially launched (pricing is not even available), we have been afforded an early look into the performance of this new controller / SSD. While this is suspected to be a cost effective entry into the SSD marketplace, for now all we can do is evaluate the performance, so let's get to it!

Read on for the full review!

Subject: Storage
Manufacturer: Samsung

Introduction

Given that we are anticipating a launch of the Samsung 850 EVO very shortly, it is a good time to back fill on the complete performance picture of the 850 Pro series. We have done several full capacity roundups of various SSD models over the past months, and the common theme with all of them is that as the die count is reduced in lower capacity models, so is the parallelism that can be achieved. This effect varies based on what type of flash memory die is used, but the end result is mostly an apparent reduction in write performance. Fueling this issue is the increase in flash memory die capacity over time.

progression-2.png

There are two different ways to counteract the effects of write speed reductions caused by larger capacity / fewer dies:

  • Reduce die capacity.
  • Increase write performance per die.

Recently there has been a trend towards *lower* capacity dies. Micron makes their 16nm flash in both 128Gbit and 64Gbit. Shifting back towards the 64Gbit dies in lower capacity SSD models helps them keep the die count up, increasing overall parallelism, and therefore keeping write speeds and random IO performance relatively high.

Read on for the results of our full capacity roundup!

Samsung 850 EVO SKUs leaked, leads to initial pricing, specs

Subject: Storage | October 28, 2014 - 01:30 PM |
Tagged: ssd, sata, Samsung, 850 EVO

Thanks to an updated SKU list and some searching, we've come across some initial photos, specs, and pricing for the upcoming Samsung 850 EVO.

8310217.01.prod_.jpg

You may have heard of an 850 EVO 1TB listing over at Frys, but there's actually more information out there. Here's a quick digest:

Specs:

  • Memory: 3D VNAND
  • Read: 550MB/sec
  • Write: 520MB/sec
  • Weight: 0.29 lbs

Pricing (via Antares Pro listings at time of writing):

  • 120GB (MZ-75E120B/AM): $100 ($0.83 / GB)
  • 250GB (MZ-75E250B/AM): $146 ($0.58 / GB)
  • 500GB (MZ-75E500B/AM): $258 ($0.52 / GB)
  • 1TB     (MZ-75E1T0B/AM): $477 ($0.48 / GB)

In addition to the above, we saw the 1TB model listed for $500 at Frys, and also found the 500GB for $264 at ProVantage. The shipping date on the Frys listing was initially November 3rd, but that has since shifted to November 24th, presumably due to an influx of orders.

We'll be publishing a full capacity roundup on the 850 Pro in anticipation of the 850 EVO launch, which based on these leaks is imminent.

Subject: Storage
Manufacturer: Western Digital

Introduction and Test System Setup

A while ago, in our review of the WD Red 6TB HDD, we noted an issue with the performance of queued commands. This could potentially impact the performance of those drives in multithreaded usage scenarios. While Western Digital acted quickly to get updated drives into the supply chain, some of the first orders might have been shipped unpatched drives. To be clear, an unpatched 5TB or 6TB Red still performs well, just not as well as it *could* perform with the corrected firmware installed.

DSC05778.JPG

We received updated samples from WD, as well as applying a firmware update to the samples used in our original review. We were able to confirm that the update does in fact work, and brings a WD60EFRX-68MYMN0 to the identical and improved performance characteristics of a WD60EFRX-68MYMN1 (note the last digit). In this article we will briefly clarify those performance differences, now that we have data more consistent with the vast majority of 5 and 6TB Reds that are out in the wild.

Test System Setup

We currently employ a pair of testbeds. A newer ASUS P8Z77-V Pro/Thunderbolt and an ASUS Z87-PRO. Storage performance variance between both boards has been deemed negligible.

PC Perspective would like to thank ASUS, Corsair, and Kingston for supplying some of the components of our test rigs. 

 
Hard Drive Test System Setup
CPU Intel Core i7-4770K
Motherboard ASUS P8Z77-V Pro/TB / ASUS Z87-PRO
Memory Kingston HyperX 4GB DDR3-2133 CL9
Hard Drive G.Skill 32GB SLC SSD
Sound Card N/A
Video Card Intel® HD Graphics 4600
Video Drivers Intel
Power Supply Corsair CMPSU-650TX
Operating System Windows 8.1 X64 (Update 1)
  • PCMark Vantage and 7
  • Yapt
  • IOMeter
  • HDTach *omitted due to incompatibility with >2TB devices*
  • HDTune
  • PCPer File Copy Test

Read on for the updated performance figures of the WD 6TB Red.

Subject: Storage
Manufacturer: ADATA

Introduction, Specifications and Packaging

Introduction:

It seems a lot of folks have been incorporating Silicon Motion's SM2246EN controller into their product lines. We first reviewed the Angelbird SSD wrk, but only in a 512GB capacity. We then reviewed a pair of Corsair Force LX's (256GB and 512GB). ADATA has joined the club with their new Premier SP610 product line, and today we are going to take a look at all available capacities of this new model:

DSC05020.JPG

It's fortunate that ADATA was able to sample us a full capacity spread, as this will let us evaluate all shipping SSD capacites that exist for the Silicon Motion SM2246EN controller.

Continue reading as we evaluate the ADATA Premier SP610!

Micron launches M600 SATA SSD with innovative SLC/MLC Dynamic Write Acceleration

Subject: Storage, Shows and Expos | September 16, 2014 - 02:29 PM |
Tagged: ssd, slc, sata, mlc, micron, M600, crucial

You may already be familiar with the Micron Crucial M550 line of SSDs (if not, familiarize yourself with our full capacity roundup here). Today Micron is pushing their tech further by releasing a new M600 line. The M600's are the first full lineup from Micron to use their 16nm flash (previously only in their MX100 line). Aside from the die shrink, Micron has addressed the glaring issue we noted in our M550 review - that issue being the sharp falloff in write speeds in lower capacities of that line. Their solution is rather innovative, to say the least.

Recall the Samsung 840 EVO's 'TurboWrite' cache, which gave that drive a burst of write speed during short sustained write periods. The 840 EVO accomplished this by each TLC die having a small SLC section of flash memory. All data written passed through this cache, and once full (a few GB, varying with drive capacity), write speed slowed to TLC levels until the host system stopped writing for long enough for the SSD to flush the cached data from SLC to TLC.

high_res_M600D_form_factors_1.jpg

The Micron M600 SSD in 2.5" SATA, MSATA, and M.2 form factors.

Micron flips the 'typical' concept of caching methods on its head. It does employ two different types of flash writing (SLC and MLC), but the first big difference is that the SLC is not really cache at all - not in the traditional sense, at least. The M600 controller, coupled with some changes made to Micron's 16nm flash, is able to dynamically change the mode of each flash memory die *on the fly*. For example, the M600 can place most of the individual 16GB (MLC) dies into SLC mode when the SSD is empty. This halves the capacity of each die, but with the added benefit of much faster and more power efficient writes. This means the M600 would really perform more like an SLC-only SSD so long as it was kept less than half full.

M600-1.png

As you fill the SSD towards (and beyond) half capacity, the controller incrementally clears the SLC-written data, moving that data onto dies configured to MLC mode. Once empty, the SLC die is switched over to MLC mode, effectively clearing more flash area for the increasing amount of user data to be stored on the SSD. This process repeats over time as the drive is filled, meaning you will see less SLC area available for accelerated writing (see chart above). Writing to the SLC area is also advantageous in mobile devices, as those writes not only occur more quickly, they consume less power in the process:

M600-2.png

For those worst case / power user scenarios, here is a graph of what a sustained sequential write to the entire drive area would look like:

M600-3.png

Realize this is not typical usage, but if it happened, you would see SLC speeds for the first ~45% of the drive, followed by MLC speeds for another 10%. After the 65% point, the drive is forced to initiate the process of clearing SLC and flipping dies over to MLC, doing so while the host write is still in progress, and therefore resulting in the relatively slow write speed (~50 MB/sec) seen above. Realize that in normal use (i.e. not filling the entire drive at full speed in one go), garbage collection would be able to rearrange data in the background during idle time, meaning write speeds should be near full SLC speed for the majority of the time. Even with the SSD nearly full, there should be at least a few GB of SLC-mode flash available for short bursts of SLC speed writes.

This caching has enabled some increased specs over the prior generation models:

M600-4.png

M600-5.png

Note the differences in write speeds, particularly in the lower capacity models. The 128GB M550 was limited to 190MB/sec, while the M600 can write at 400MB/sec in SLC mode (which is where it should sit most of the time).

We'll be testing the M600 shortly and will come back with a full evaluation of the SSD as a whole and more specifically how it handles this new tech under real usage scenarios.

Full press blast after the break.

Source: Micron
Subject: Storage
Manufacturer: Corsair

Introduction, Specifications and Packaging

Introduction:

We first looked at the Silicon Motion 2246EN controller in our Angelbird SSD wrk review. In that review, we noted the highest sequential performance seen in any SATA SSD reviewed to date. Eager to expand our testing to include additional vendors and capacities, our next review touching on this controller is the Corsair Force LX series of SSDs. The Force LX Series is available in 128GB, 256GB, and 512GB capacities, and today we will look at the 256GB and 512GB iterations of this line:

DSC05011.JPG

Continue reading as we evaluate the Corsair Force LX series:

Subject: Storage
Manufacturer: AMD

Introduction, Specifications and Packaging

Introduction:

AMD has been branching their brand out past CPUs for nearly a decade now. Back in 2006, AMD acquired ATI, and their video card branch has been highly competitive ever since. Then in 2011, AMD entered the RAM market by partnering with Patriot and VisionTek. That partnership appears to have been fruitful, along with some additional help in the form of RAMDisk software through an additional partnership with Dataram, as more recently a highly competitive Gamer Series of that RAM was launched. So, CPU's - check, GPU's - check, RAM - check. What's next? Solid State Drives? Sure, why not!

DSC04654.JPG

Behold the AMD Radeon R7 SSD!

Ok, so the naming might be a bit confusing for those familiar with AMD's video card line of the same name, so you'll have to be sure to include 'SSD' in your searches if you are looking for one of these on the market. Just like AMD handled the RAM, they have again chosen to partner with another company in the creation of a new product:

lineup.png

...and this time that choice was OCZ. As you can see above, the Radeon R7 is a gamer-oriented SSD, which sits right in between the Vertex 460 and the Vector 150 in OCZ's product lineup. The expectation is performance similar to the Vector, but with a slightly lower warranty and GB/day rating. We also see the inclusion of the lower cost 'advanced' Toshiba A19nm MLC flash, which should help with pricing and get this new SSD into the hands of even more gamers.

Continue reading as we evaluate the new AMD Radeon R7 SSD!

The downwards Arc of flash prices; OCZ releases an SSD at $0.50/GB

Subject: Storage | August 13, 2014 - 02:38 PM |
Tagged: toshiba, ssd, sata, ocz, barefoot 3, ARC

Before even looking at the performance the real selling point of the new OCZ ARC 100 is the MSRP, the 240GB and 480GB models are slated to be released at $0.50/GB and will likely follow the usual trend of SSD prices and drop from there.  The drives use the Barefoot 3 controller, this one clocked slightly lower than the Vertex 460 but still capable of accelerating encryption.  Once The Tech Report set the drive up in their test bed the performance was almost on par with the Vertex 460 and other mid to high end SSDs, especially in comparison to the Crucial MX100.

Make sure to read Al's review as well, not just for the performance numbers but also an explanation of OCZ's warranty on this drive.

DSC04576.JPG

"OCZ's latest value SSD is priced at just $0.50 per gig, but it hangs with mid-range and even high-end drives in real-world and demanding workloads. It's also backed by an upgraded warranty and some impressive internal reliability data provided by OCZ. We take a closer look:"

Here are some more Storage reviews from around the web:

Storage