Author:
Subject: Editorial
Manufacturer: GLOBALFOUNDRIES

Taking a Fresh Look at GLOBALFOUNDRIES

It has been a while since we last talked about GLOBALFOUNDRIES, and it is high time to do so.  So why the long wait between updates?  Well, I think the long and short of it is a lack of execution from their stated roadmaps from around 2009 on.  When GF first came on the scene they had a very aggressive roadmap about where their process technology will be and how it will be implemented.  I believe that GF first mentioned a working 28 nm process in a early 2011 timeframe.  There was a lot of excitement in some corners as people expected next generation GPUs to be available around then using that process node.

fab1_r.jpg

Fab 1 is the facility where all 32 nm SOI and most 28 nm HKMG are produced.

Obviously GF did not get that particular process up and running as expected.  In fact, they had some real issues getting 32 nm SOI running in a timely manner.  Llano was the first product GF produced on that particular node, as well as plenty of test wafers of Bulldozer parts.  Both were delayed from when they were initially expected to hit, and both had fabrication issues.  Time and money can fix most things when it comes to process technology, and eventually GF was able to solve what issues they had on their end.  32 nm SOI/HKMG is producing like gangbusters.  AMD has improved their designs on their end to make things a bit easier as well at GF.

While shoring up the 32 nm process was of extreme importance to GF, it seemingly took resources away from further developing 28 nm and below processes.  While work was still being done on these products, the roadmap was far too aggressive for what they were able to accomplish.  The hits just kept coming though.  AMD cut back on 32nm orders, which had a financial impact on both companies.  It was cheaper for AMD to renegotiate the contract and take a penalty rather than order chips that it simply could not sell.  GF then had lots of line space open on 32 nm SOI (Dresden) that could not be filled.  AMD then voided another contract in which they suffered a larger penalty by opting to potentially utilize a second source for 28 nm HKMG production of their CPUs and APUs.  AMD obviously was very uncomfortable about where GF was with their 28 nm process.

During all of this time GF was working to get their Luther Forest FAB 8 up and running.  Building a new FAB is no small task.  This is a multi-billion dollar endeavor and any new FAB design will have complications.  Happily for GF, the development of this FAB has gone along seemingly according to plan.  The FAB has achieved every major milestone in construction and deployment.  Still, the risks involved with a FAB that could reach around $8 billion+ are immense.

2012 was not exactly the year that GF expected, or hoped for.  It was tough on them and their partners.  They also had more expenses such as acquiring Chartered back in 2009 and then acquiring the rather significant stake that AMD had in the company in the first place.  During this time ATIC has been pumping money into GF to keep it afloat as well as its aspirations at being a major player in the fabrication industry.

Continue reading our editorial on the status of GLOBALFOUNDRIES going into 2013 and beyond!!

ST Ericsson Shows off First FD-SOI Product

Subject: Editorial | January 16, 2013 - 06:41 PM |
Tagged: ST Ericsson, planar, PD-SOI, L8580, FinFET, FD-SOI, Cortex A9, cortex a15, arm

SOI has been around for some time now, but in partially depleted form (PD-SOI).  Quite a few manufacturers have utilized PD-SOI for their products, such as AMD and IBM (probably the two largest producers of SOI based parts).  Oddly enough, Intel has shunned SOI wafers altogether.  One would expect Intel to spare no expense to have the fastest semiconductor based chips on the market, but SOI did not provide enough advantages for the chip behemoth to outweigh the nearly 10% increase in wafer and production costs.  There were certainly quite a few interesting properties to PD-SOI, but Intel was able to find ways around bulk silicon’s limitations.  These non-SOI improvements include stress and strain, low-K dialectrics, high-K metal gates, and now 3D FinFET Technology.  Intel simply did not need SOI to achieve the performance they were looking for while still using bulk silicon wafers.

stlogo.jpg

Things started looking a bit grim for SOI as a technology a few years back.  AMD was starting to back out of utilizing SOI for sub-32 nm products, and IBM was slowly shifting away from producing chips based on their Power technology.  PD-SOI’s days seemed numbered.  And they are.  That is ok though, as the technology will see a massive uptake with the introduction of Fully Depleted SOI wafers.  I will not go into the technology in full right now, but expect another article further into the future.  I mentioned in a tweet some days ago that in manufacturing, materials are still king.  This looks to hold true with FD-SOI.

Intel had to utilize 3D FinFETs on 22 nm because they simply could not get the performance out of bulk silicon and planar structures.  There are advantages and disadvantages to these structures.  The advantage is that better power characteristics can be attained without using exotic materials all the while keeping bins high, but the disadvantage is the increased complexity of wafer production with such structures.  It is arguable that the increase in complexity completely offsets the price premium of a SOI based solution.  We have also seen with the Intel process that while power consumption is decreased as compared to the previous 32 nm process, the switching performance vs. power consumption is certainly not optimal.  Hence the reason why we have not seen Intel release Ivy Bridge parts that are clocked significantly faster than last generation Sandy Bridge chips. 

FD-SOI and planar structures at 22 nm and 20 nm promise the improve power characteristics as compared to bulk/FinFET.  It also looks to improve overall power vs. clockspeed as compared to bulk/FinFET.  In a nutshell this means better power consumption as well as a jump in clockspeed as compared to previous generations.  Gate first designs using FD-SOI could be very good, but industry analysts say that gate last designs could be “spectacular”.

SOIConsortiumFDSOIBulk.jpg

So what does this have to do with ST Ericsson?  They are one of the first companies to show a products based on 28 nm FD-SOI technology.    The ARM based NovaThore L8580 is a dual Cortex A9 design with the graphics portion being the IMG SGX544.  At first glance we would think that ST is behind the ball, as other manufacturers are releasing Cortex A15 parts which improve IPC by a significant amount.  Then we start digging into the details.

The fastest Cortex A9 designs that we have seen so far have been clocked around 1.5 GHz.  The L8580 can be clocked up to 2.5 GHz.  Whatever IPC improvements we see with A15 are soon washed away by the sheer clockspeed advantage that the L8580 has.  While it has been rumored that the Tegra 4 will be clocked up to 2 GHz in tablet form, ST is able to get the L8580 to 2.5 GHz in a smartphone.  NVIDIA utilizes a 5th core to improve low power performance, but ST was able to get their chip to run at 0.6v in low power mode.  This decrease in complexity combined with what appears to be outstanding electrical and thermal characteristics makes this a very interesting device.

The Cortex A9 cores are not the only ones to see an improvement in clockspeed and power consumption.  The well known and extensively used SGX544 graphics portion runs at 600 MHz in a handheld device, and is around 20% faster clocked than other comparable parts.

L8580.jpg

When we add all these things together we have a product that appears to be head and shoulders above current parts from Qualcomm and Samsung.  It also appears that these parts are comparable, if not slightly ahead, of the announced next generation of parts from the Cortex A15 crowd.  It stands to reason that ST Ericsson will run away with the market and be included in every new handheld sold from now until the first 22/20 nm parts are released?  Unfortunately for ST Ericsson, this is not the case.  If there was an Achilles Heel to the L8580 it is that of production capabilities.  ST Ericsson started production on FD-SOI wafers this past spring, but it was processing hundreds of wafers a month vs. the thousands that are required for full scale production.  We can assume that ST Ericsson has improved this situation, but they are not exactly a powerhouse when it comes to manufacturing prowess.  They simply do not seem to have the FD-SOI production capabilities to handle orders from more than a handful of cellphone and table manufacturers.

ST Ericsson has a very interesting part, and it certainly looks to prove the capabilities of FD-SOI when compared to competing products being produced on bulk silicon.  The Nova Thor L8580 will gain some new customers with its combination of performance and power characteristics, even though it is using the “older” Cortex A9 design.  FD-SOI has certainly caught the industrys’ attention.  There are more FD-SOI factoids floating around that I want to cover soon, but these will have to wait.  For the time being ST Ericsson is on the cutting edge when it comes to SOI and their proof of concept L8580 seems to have exceeded expectations.

Source: ST Ericsson

Deals for August 8th - 27-in Planar 1080p Display for $209

Subject: General Tech, Displays | August 8, 2012 - 10:16 AM |
Tagged: deal of the day, planar, monitor

Today's deals are quite assorted but the highlight for me is the 27-in Planar PX2710MW 1080p monitor that you can grab for an impressively low price of $209.99!!

deal0808.png

Check out the other deals available today!

Laptops

17.3" Alienware M17x Core i7-2670QM 2.2GHz Quad-core 1080p Gaming Laptop w/4GB RAM, 750GB HDD, 2GB Radeon HD 6970M for $1,449 with free shipping (normally $1,849 - use coupon code on LogicBuy).

17.3" HP Pavilion dv7t-7000 Quad Edition Core i7-3610QM 2.3GHz Quad-core Laptop w/8GB RAM, 1TB HDD, Blu-ray & GeForce GT 630M for $800 with free shipping (normally $1000 - use coupon code on LogicBuy).

15.6" Samsung Series 3 AMD A63420M 1.5GHz Quad-core Laptop w/4GB RAM, 500GB HDD for $400 (normally $530).

15.6" Toshiba Satellite L750D AMD A6-3420M 1.5GHz Quad-core Laptop w/4GB RAM, 320GB HDD for $400 (normally $550).

15.6" HP ProBook 4535s AMD E2-3000M 1.8GHz Dual-core Laptop w/4GB RAM, 320GB HDD & Windows 7 Professional for $430 (normally $550).

Desktops

Dell Vostro 470 Core i5-3450 3.1GHz Quad-core Mini Tower w/4GB RAM, 500GB HDD & Wireless-N, Bluetooth for $529 with free shipping (normally $679 - use coupon code W9D06J14FX10WM).

Acer Predator AG3610-UR10P Core i7-2600 3.4GHz Quad-core Desktop w/8GB RAM, 2TB HDD, 2GB GeForce GT 530 for $900 (normally $1,050).

23" HP Pavilion 23-1000z AMD A6-5400K 3.6GHz Dual-core 1080p All-in-one PC w/4GB RAM, 500GB HDD for $630 with free shipping (normally $750 - use coupon code 20LOGICBUY).

Monitors

27" Planar PX2710MW 1080p 2ms LCD Monitor w/ HDMI & 3-year warranty for $210 with free shipping (normally $470 - use coupon code D84NDZ3JCT3K3K).

27" ASUS VE278Q 1080p LED-backlit LCD Monitor w/ DisplayPort for $300 with free shipping (normally $330 - use coupon code SOD68788).

22" Dell E2213 1680 x 1050 LED-backlit LCD Monitor w/3-year warranty for $151 with free shipping (normally $199 - use coupon code on LogicBuy).

Peripherals

EVGA GeForce GTX 460 2Win (Fermi) 2GB GDDR5 Dual GPU Video Card for $170 with free shipping (normally $250 - use this form).

4TB (2 x 2TB) Iomega StorCenter ix2-200 Network Storage Cloud Edition for $325 with free shipping (normally $469.99 - use coupon code USMEDALS).

240GB SanDisk Extreme 2.5" SATA III SSD (SDSSDX-240G-G25) for $170 with free shipping (normally $230).

120GB Kingston HyperX 3K 2.5" SATA III SSD for $80 with free shipping (normally $150).

Sony Bluetooth Wireless Keyboard (VGP-BKB1) for $70 with free shipping (normally $99).

Targus Meridian II 15.6" Roller Laptop Case for $75 with free shipping (normally $90).

Dell 1355cn Multifunction Color Printer for $237 with free shipping (normally $300).

Tablets

10.1" Toshiba Excite 16GB Quad-core Tegra 3 Android 4.0 Tablet for $384 with free shipping (normally $399 - use coupon code on LogicBuy).

10.1" Asus Transformer Pad Infinity TF700T 32GB Tablet + Dock Bundle for $608 with free shipping (normally $650).

Logitech Bluetooth Keyboard Case (iPad 2) for $44 with free shipping (normally $60 - use coupon code).

Gaming:

GUNNAR Call of Duty MW3 Gaming Eyewear for $50 with free shipping (normally $100).

Devil May Cry Collection (360/PS3) for $30 with free shipping (normally $40).

Metal Gear Solid HD Collection (360/PS3) for $30 with free shipping (normally $40).

Home Entertainment:

47" LG 47LD950C 1080p 240Hz 3D LCD HDTV for $700 (normally $849 - use this form).

46" Westinghouse LD-4680 120Hz 1080p LED HDTV for $570 with free shipping (normally $800).

46" Sharp LC-46SV49U 1080p LCD HDTV for $480 with free shipping (normally $600).

46" Samsung UN46D6000 1080p 120Hz LED HDTV for $827 with free shipping (normally $1,099).

32" Proscan PLED3204A720p LED HDTV for $190 (normally $250 - use coupon code on LogicBuy).

Personal Portables & Peripherals:

Sony In-Ear Headphones iPod/iPhone Remote for $80 with free shipping (normally $99).

12MP Canon PowerShot SX230 HS Red Digital Camera for $194 with free shipping (normally $229 - use coupon code Learn2SaveBG5).

14MP Olympus Tough TG-320 Digital Camera Bundle for $131 with free shipping (normally $159).

Source: LogicBuy