The Connector Formerly Known as SFF-8639 - Now Called U.2

Subject: Storage | June 8, 2015 - 04:04 PM |
Tagged: U.2, ssd, SFF-8639, pcie, NVMe, Intel, computex 2015, computex

Intel has announced that the SSD Form Factor Working Group has finally come up with a name to replace the long winded SFF-8639 label currently applied to 2.5" devices that connect via PCIe.

u2-nvme-ssd.jpg

As Hardwarezone peeked in the above photo, the SFF-8639 connector will now be called U.2 (spoken 'U dot 2'). This appropriately corresponds with the M.2 connector currently used in portable and small form factor devices today, just with a new letter before the dot.

U.2-M.2.jpg

An M.2 NVMe PCIe device placed on top of a U.2 NVMe PCIe device.

Just as how the M.2 connector can carry SATA and PCIe signaling, the U.2 connector is an extension of the SATA / SAS standard connectors:

Demartek_SFF-8639.png

Not only are there an additional 7 pins between the repurposed SATA data and power pins, there are an additional 40 pins on the back side. These can carry up to PCIe 3.0 x4 to the connected device. Here is what those pins look like on a connector itself:

360x240xSFF-8639PCIe.jpg.pagespeed.ic_.aYB-7jt4Ab.jpg

Further details about the SFF-8639 / U.2 connector can be seen in the below slide, taken from the P3700 press briefing:

IntelP3700-SFF8639_w_600.png

With throughputs of up to 4 GB/sec and the ability to employ the new low latency NVMe protocol, the U.2 and M.2 standards are expected to quickly overtake the need for SATA Express. An additional look at the U.2 standard (then called SFF-8639), as well as a means of adapting from M.2 to U.2, can be found in our Intel SSD 750 Review.

Source: Hardwarezone
Subject: Storage
Manufacturer: Intel
Tagged: SSD 750, pcie, NVMe, IOPS, Intel

It's been a while since we reviewed Intel's SSD 750 PCIe NVMe fire-breathing SSD, and since that launch we more recently had some giveaways and contests. We got the prizes in to be sent out to the winners, but before that happened, we had this stack of hardware sitting here. It just kept staring down at me (literally - this is the view from my chair):

IMG_9003.JPG

That stack of 5 Intel SSD 750’s was burning itself into my periphery as I worked on an upcoming review of the new Seiki Pro 40” 4K display. A few feet in the other direction was our CPU testbed machine, an ASUS X99-Deluxe with a 40-lane Intel Core i7-5960 CPU installed. I just couldn't live with myself if we sent these prizes out without properly ‘testing’ them first, so then this happened:

DSC01762.jpg

This will not be a typical complete review, as this much hardware in parallel is not realistically comparable to even the craziest power user setup. It is more just a couple of hours of playing with an insane hardware configuration and exploring the various limits and bottlenecks we were sure to run into. We’ll do a few tests in a some different configurations and let you know what we found out.

Continue reading for the results of our little experiment!

Computex 2015: OCZ Trion and Z-Drive 6000, 6300 SSDs Sighted

Subject: Storage, Shows and Expos | June 2, 2015 - 11:18 PM |
Tagged: Z-Drive 6300, Z-Drive 6000, Trion, ssd, pcie, OCZ Technology, ocz, NVMe, computex 2015, computex

OCZ is showing off some new goodies at Computex 2015 in the form of a completely new SSD model – the Trion:

Trion Pic.jpg

The Trion is based on an in-house Toshiba ‘Alishan’ controller – the first internal design from that company. Since it is sourced from within Toshiba, the new SSD controller is to be tuned for consumer workloads and should employ lower power states than prior OCZ / Indilinx SSD controllers, as well as Toshiba’s own proprietary QSBC (Quadruple Swing-By Code) error correction technology, which should squeeze a bit more usable life out of the A19nm TLC flash. This is what QSBC looks like compared to competing BCH and LDPC technologies:

QSBC.png

We suspect Toshiba dialed back the algorithm a bit for client usage, but it should still be far superior to BCH. We don’t have many more details as the Trion has not yet been officially launched, but we do have this shot of a round of benchmark results from a pre-production 960GB model:

Trion-2.JPG

From what we can see, it appears to be a good performer (by modern SATA 6Gb/sec SSD standards), but we naturally can't tell anything for sure until we get samples in for local testing, as we have no idea of the state of preconditioning of the Trion in those tests.

Also on display were the recently launched Z-Drive 6000 and 6300 Series parts:

ZDrive6000.jpg

ZDrive 6300 pic1.jpg

These are OCZ’s enterprise-grade NVMe devices, available in 800GB, 1.6TB, and 3.2TB. The 6000 series is a 2.5” 15mm SFF-8639 device aimed at lighter workloads with a rating of 1 Drive Write Per Day (DWPD) over a 5-year period, while the 6300 series brings that figure up to 3 DWPD and offers an HHHL PCIe card as an optional form factor. The higher writes per day are facilitated by the move to A19nm eMLC flash.

We’ll be keeping a close eye on these new developments from OCZ and we are eager to get these in the shop for some thorough testing!

Press blast for the Trion and Z-Drive 6300 Series after the break!

Love the NVMe, shame almost nobody can use it

Subject: Storage | May 20, 2015 - 02:48 PM |
Tagged: XP941, SSD 750, ssd, SM951, pcie, NVMe, MZVPV512HDGL, AHCI

For owners of Z97 or X99 boards with updated UEFIs or a rare SFF-8643 connector for the 2.5" version, booting from NVMe is possible, for the rest the Intel SSD 750 will have to be a storage drive.   Al recently looked at this more than impressive PCIe SSD and now [H]ard|OCP has had a bash at it.  The review is certainly worth checking out as some of their tests, especially the real world ones, differ from the benchmarks that Al used.  This will give you more information about how the new SSD will handle your workloads, research worth it if you are thinking of spending $1055 for the 1.2TB model.

1428498730H4WON14xlV_1_1.jpg

"Intel is set to be the catalyst for a long-awaited leap forward in storage technology with the new SSD 750 bringing NVMe storage to client PCs for the first time, and turning the high end SSD space upside-down. We are expecting blinding IOPs and we dig in to find out what it can mean to the hardware enthusiast."

Here are some more Storage reviews from around the web:

Storage

Source: [H]ard|OCP
Author:
Subject: Storage
Manufacturer: Intel

Don't be afraid of PCIe or NVMe

In very early April, Intel put a shot across the bow of the storage world with the release of the SSD 750 Series of storage devices. Using the PCI Express bus but taking advantage of the new NVMe (Non-Volatile Memory Express) protocol, it drastically upgrades the capabilities of storage within modern PC platforms. In Allyn's review, for example, we saw read data transfer rates cross into the 2.6 GB/s range in sequential workloads and write rates over 1.2 GB/s sequentially. Even more impressive is the random I/O performance where the SSD 750 is literally 2x the speed of previous PCIe SSD options.

IMG_2051.JPG

A couple of weeks later we posted a story looking into the compatibility of the SSD 750 with different motherboards and chipsets. We found that booting from the SSD 750 Series products is indeed going to require specific motherboards and platforms simply due to the "new-ness" of the NVMe protocol. Officially, Intel is only going to support Z97 and X99 chipsets today but obviously you can expect all future chipsets to have proper NVMe integration. We did find a couple of outliers that allowed for bootability with the SSD 750, but I wouldn't count on it.

Assuming you have a Z97/X99 motherboard that properly supports NVMe drives, of which ASUS, MSI and Gigabyte seem to be on top of, what are the steps and processes necessary to get your system up and running on the Intel SSD 750? As it turns out, it's incredibly simple.

Step 1

Make sure you have enabled NVMe in the latest BIOS/UEFI. The screenshot below shows our ASUS X99-Deluxe motherboard used during testing and that it is properly recognizing the device. There was no specific option to ENABLED NVMe here though we have seen instances where that is required.

Continue reading our overview of installing Windows on the Intel SSD 750 Series!!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

There's been a lot of recent talk about the Samsung SM951 M.2 PCIe SSD. It was supposed to launch as an NVMe product, but ended up coming out in AHCI form. We can only assume that Samsung chose to hold back on their NVMe-capable iteration because many devices are unable to boot fron an NVMe SSD. Sitting back for a few months was a wise choice in this case, as an NVMe-only version would limit the OEM products that could equip it. That new variant did finally end up launching, and we have rounded it and the other Samsung M.2 PCIe SSDs up for some much awaited testing:

150407-165908.jpg

I'll be comparing the three above units against some other PCIe SSDs, including the Intel SSD 750, Kingston HyperX Predator, G.Skill Phoenix Blade, Plextor M6e Black, and more!

Continue reading our review of these hot new M.2 products!

Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Editor's note: We are hosting a live stream event with our friends at Intel's SSD group today to discuss the new SSD 750 Series launch and to giveaway a couple of the 400GB units as well! Be sure you stop by to ask quesitons, learn about the technology and have a chance to win some hardware!!

Introduction:

Intel has a habit of overlapping their enterprise and consumer product lines. Their initial X25-M was marketed to both consumer and enterprise, with heavier workloads reserved for the X25-E. Their SSD 320 Series was also spec'd for both consumer and enterprise usage. Their most recent SSD 730 Series was actually an overclocked version of their SSD DC S3500 units. Clearly this is an established trend for Intel, so when they dominated flash memory performance with the SSD DC P3700 launch last year, pretty much everyone following these sorts of things eagerly waited in anticipation of a consumer release.

While they were hard to find outside of enterprise supply chains, some dedicated users picked up that enterprise part for their enthusiast systems, but many were disappointed as the P3700's enterprise hardware and firmware conflicted with many consumer motherboards' BIOS, rendering it unbootable for some and causing address space conflicts for others. In short, the P3700 was a great product that simply did not function properly with most consumer motherboards. All anyone could do was wait for Intel to spin a consumer product from this enterprise part, and that day is today:

addincard.jpg

This is the add-in card version of the new Intel SSD 750 Series that brings NVMe technology and insane performance levels to consumers at a cost that is more affordable than you might think.

150401-224510.jpg

As with the enterprise variant, Intel chose to launch the SSD 750 Series in the familiar HHHL PCIe x4 form factor as well as a 2.5" SFF-8639 packaging. The 2.5" model contains the exact same set of components, just rearranged into a smaller device.

150401-224548.jpg

Despite being 2.5", this is not a SATA device. While the connector may look similar, it is *very* different:

SFF-8639.png

As you can see above, SFF-8639 further extends on the familiar SATA power and data connections, which had already been extended a few times to add additional SAS data lines. The new spec adds a complete row of pins on the back side of the connector to support four lanes of PCIe. This means the SFF variant of the SSD 750 will perform identically to the PCIe half-height card version. Since SFF-8639 was born as an enterprise spec, one question remains - how do you connect it to a consumer desktop motherboard? Well, desktop motherboards are coming with M.2 ports that can support up to PCIe 3.0 x4, so all you really need is a simple way to get from point A to point B:

150401-230518.jpg

Pictured above (left) is the ASUS 'Hyper Kit' adapter PCB, which was sampled to us with their new Sabertooth X99 motherboard just for testing these new 2.5" devices. The connector you see at the right may look familiar, as it is an internal Mini-SAS HD (SFF-8643) cable commonly used with high end SAS RAID cards. Intel is basically borrowing the physical spec, but rewiring those four SAS lanes over to the PCIe pins of the SFF-8639 connector at the other end of the cable.

Continue reading our review of the Intel SSD 750 Series NVMe 1.2TB PCIe drives!!

Intel 750 Series SSD Spotted at PAX East, Appears to be SSD DC P3500-based

Subject: Storage | March 9, 2015 - 04:56 PM |
Tagged: SSD 750, pcie, p3500, NVMe, Intel

At PAX East, what appears to be the new Intel SSD 750 Series was spotted:

b7684a3fb48d3cbea13dff718c34b6d9_XL.jpg

The above article mentiones the 750 will be available in 400GB and 1.2TB versions, with an 800GB model 'being considered internally'. Those capacities sound familiar - look at this crop of the specs for the P3500/P3600/P3700 Series:

P3x00 specs.png

Note the P3500 has identical capacity grades. As one more point of comparison, look at this leaked screen shot of the UNH-IOL compatibility list:

43331_01_new-consumer-intel-750-nvme-ssd-pops-up-unh-iol-compatibility-list_full.jpg

Source: TweakTown

...so with what appears to be identical firmware revisions, it's a safe bet that the upcoming SSD 750 Series will borrow the same fire-breathing 18-channel controller present in the Intel SSD DC P3700 (reviewed here). The packaging may be more consumer oriented, and the power is likely dialed back a bit as to produce less heat in more airflow constrained consumer PC cases, but it's looking more and more like the SSD 750 will be a reasonably quick consumer / prosumer / workstation SSD. Given that the P3500 launched at $1.50/GB, we hope to see the 750 launch for far less.

My biggest beef with this upcoming consumer NVMe part from Intel is the (possible) lack of an 800GB capacity. Many power users will consider 400GB too small, but would then be forced to jump 3x in capacity (and price) to the 1.2TB model. That might be ok for enterprise budgets, but it won't fly for PC users who can choose from other PCIe SSDs that fill that possible 800-960GB void in Intel's lineup.

Source: Gamers Nexus
Subject: Storage
Manufacturer: Plextor
Tagged: ssd, plextor, pcie, 256GB

Introduction, Specifications and Packaging

Introduction:

Plextor launched their M6e PCIe SSD in mid-2014. This was the first consumer retail available native PCIe SSD. While previous solutions such as the OCZ RevoDrive bridged SATA SSD controllers to PCIe through a RAID or VCA device, the M6e went with a Marvell controller that could speak directly to the host system over a PCIe 2.0 x2 link. Since M.2 was not widely available at launch time, Plextor also made the M6e available with a half-height PCIe interposer, making for a painless upgrade for those on older non M.2 motherboards (which at that time was the vast majority).

With the M6e out for only a few months time (and in multiple versions), I was surprised to see Plextor launch an additonal version of it at the 2015 CES this past January. Announced alongside the upcoming M7e, the M6e Black Edition is essentially a pimped out version of the original M6e PCIe:

DSC07414_resize.JPG

We left CES with a sample of the M6e Black, but had to divert our attention to a few other pressing issues shortly after. With all of that behind us, it's time to get back to cranking out the storage goodness, so let's get to it!

Read on for the full review!

CES 2015: OCZ shows off new JetExpress SSD controller, Vector 180, Z-Drive 6000

Subject: Storage, Shows and Expos | January 9, 2015 - 02:36 PM |
Tagged: Z-Drive 6000, Vector 180, ssd, SFF-8639, sata, pcie, ocz, NVMe, M.2, JetExpress, CES 2014, CES

At CES, we stopped by OCZ and were briefed on their new SSD controller, the JetExpress:

DSC07253_resize.JPG

As indicated on the placard, the JetExpress supports M.2 PCIe 3.0 x4 (M.2 is typically PCIe 2.0), and natively supports both SATA and PCIe / NVMe connectivity.

DSC07255_resize.JPG

I found out some more goodies about this new controller. Aside from being configurable during production to support SATA or PCIe, this is actually a 10 channel controller (SSDs are typically limited to 8 channels). The controller can support LDPC *in addition to* BCH error correction. This is important as LDPC requires more compute power and is slower than BCH, so OCZ is baking in the capability to use BCH early on, and transition over to LDPC as the flash wears to the point where BCH can no longer efficiently correct bad pages. This means the JetExpress should be able to maintain very high performance while extending flash life out with LDPC only when it's needed.

DSC07262_resize.JPG

Above is the Vector 180, which is launching soon. We are under NDA on this product, but nothing is stopping you from checking out the pic of what they had displayed above :).

DSC07267_resize.JPG

Here's the Z-Drive 6000, an SFF-8639 (PCIe 3.0 x4) 2.5" enterprise SSD. The PMC Sierra controller supports NVMe connectivity and power modes are switchable to enable even higher performance. Performance looks to be very competitive with the Intel P3700, rated at 3GB/sec reads and 2GB/sec writes, as well as 700,000 4k random read and 175,000 4k random write IOPS. Our next OCZ review should be of the Vector 180, but samples are not out yet, so stay tuned!

OCZ's press blast for the JetExpress launch appears after the break.

Coverage of CES 2015 is brought to you by Logitech!

PC Perspective's CES 2015 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Source: OCZ