GDDR5X Memory Standard Gets Official with JEDEC

Subject: Graphics Cards, Memory | January 22, 2016 - 11:08 AM |
Tagged: Polaris, pascal, nvidia, jedec, gddr5x, GDDR5, amd

Though information about the technology has been making rounds over the last several weeks, GDDR5X technology finally gets official with an announcement from JEDEC this morning. The JEDEC Solid State Foundation is, as Wikipedia tells us, an "independent semiconductor engineering trade organization and standardization body" that is responsible for creating memory standards. Getting the official nod from the org means we are likely to see implementations of GDDR5X in the near future.

The press release is short and sweet. Take a look.

ARLINGTON, Va., USA – JANUARY 21, 2016 –JEDEC Solid State Technology Association, the global leader in the development of standards for the microelectronics industry, today announced the publication of JESD232 Graphics Double Data Rate (GDDR5X) SGRAM.  Available for free download from the JEDEC website, the new memory standard is designed to satisfy the increasing need for more memory bandwidth in graphics, gaming, compute, and networking applications.

Derived from the widely adopted GDDR5 SGRAM JEDEC standard, GDDR5X specifies key elements related to the design and operability of memory chips for applications requiring very high memory bandwidth.  With the intent to address the needs of high-performance applications demanding ever higher data rates, GDDR5X  is targeting data rates of 10 to 14 Gb/s, a 2X increase over GDDR5.  In order to allow a smooth transition from GDDR5, GDDR5X utilizes the same, proven pseudo open drain (POD) signaling as GDDR5.

“GDDR5X represents a significant leap forward for high end GPU design,” said Mian Quddus, JEDEC Board of Directors Chairman.  “Its performance improvements over the prior standard will help enable the next generation of graphics and other high-performance applications.”

JEDEC claims that by using the same signaling type as GDDR5 but it is able to double the per-pin data rate to 10-14 Gb/s. In fact, based on leaked slides about GDDR5X from October, JEDEC actually calls GDDR5X an extension to GDDR5, not a new standard. How does GDDR5X reach these new speeds? By doubling the prefech from 32 bytes to 64 bytes. This will require a redesign of the memory controller for any processor that wants to integrate it. 

gddr5x.jpg

Image source: VR-Zone.com

As for usable bandwidth, though information isn't quoted directly, it would likely see a much lower increase than we are seeing in the per-pin statements from the press release. Because the memory bus width would remain unchanged, and GDDR5X just grabs twice the chunk sizes in prefetch, we should expect an incremental change. No mention of power efficiency is mentioned either and that was one of the driving factors in the development of HBM.

07-bwperwatt.jpg

Performance efficiency graph from AMD's HBM presentation

I am excited about any improvement in memory technology that will increase GPU performance, but I can tell you that from my conversations with both AMD and NVIDIA, no one appears to be jumping at the chance to integrate GDDR5X into upcoming graphics cards. That doesn't mean it won't happen with some version of Polaris or Pascal, but it seems that there may be concerns other than bandwidth that keep it from taking hold. 

Source: JEDEC

Report: NVIDIA Pascal GP104 Discovered, May Not Use HBM

Subject: Graphics Cards | January 11, 2016 - 06:05 PM |
Tagged: rumor, report, pascal, nvidia, HBM2, hbm, GP104

A delivery of GPUs and related test equipment from Taiwan to Banglore has led to speculation about NVIDIA's upcoming GP104 Pascal GPU.

GP104_delivery.png

Image via Zauba.com

How much information can be gleaned from an import shipping manifest (linked here)? The data indicates a chip with a 37.5 x 37.5 mm package and 2152 pins, which is being attributed to the GP104 based on knowledge of “earlier, similar deliveries” (or possible inside information). This has prompted members of the 3dcenter.org forums (German language) to speculate on the use of GDDR5 or GDDR5X memory based on the likelihood of HBM being implemented on a die of this size. 

Of course, NVIDIA has stated that Pascal will implement 3D memory, and the upcoming GP100 will reportedly be on a 55 x 55 mm package using HBM2. Could this be a new, lower-cost part using the existing GDDR5 standard or the faster GDDR5X instead? VideoCardz and WCCFtech have posted stories based on the 3DCenter report, and to quote directly from the VideoCardz post on the subject:

"3DCenter has a theory that GP104 could actually not use HBM, but GDDR5(X) instead. This would rather be a very strange decision, but could NVIDIA possibly make smaller GPU (than GM204) and still accommodate 4 HBM modules? This theory is not taken from the thin air. The GP100 aka the Big Pascal, would supposedly come in 55x55mm BGA package. That’s 10mm more than GM200, which were probably required for additional HBM modules. Of course those numbers are for the whole package (with interposer), not just the GPU."

All of this is a lot to take from a shipping record that might not even be related to an NVIDIA product, but the report has made the rounds at this point so now we’ll just have to wait for new information.

Source: 3DCenter.org

CES 2016 Podcast Day 1 - Lenovo, NVIDIA Press Conference, new AMD GPUs and more!

Subject: General Tech | January 5, 2016 - 04:40 AM |
Tagged: podcast, video, CES, CES 2016, Lenovo, Thinkpad, x1 carbon, x1 yoga, nvidia, pascal, amd, Polaris, FinFET, 14nm

CES 2016 Podcast Day 1 - 01/05/16

CES is just beginning. Join us for announcements from Lenovo, NVIDIA Press Conference, new AMD GPUs and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Allyn Malventano, Ken Addison and Sebastian Peak

Program length: 1:11:05

Be sure to subscribe to the PC Perspective YouTube channel!!

CES 2016: NVIDIA Launches DRIVE PX 2 With Dual Pascal GPUs Driving A Deep Neural Network

Subject: General Tech | January 5, 2016 - 01:17 AM |
Tagged: tegra, pascal, nvidia, driveworks, drive px 2, deep neural network, deep learning, autonomous car

NVIDIA is using the Consumer Electronics Show to launch the Drive PX 2 which is the latest bit of hardware aimed at autonomous vehicles. Several NVIDIA products combine to create the company's self-driving "end to end solution" including DIGITS, DriveWorks, and the Drive PX 2 hardware to train, optimize, and run the neural network software that will allegedly be the brains of future self-driving cars (or so NVIDIA hopes).

NVIDIA DRIVE PX 2 Self Driving Car Supercomputer.jpg

The Drive PX 2 hardware is the successor to the Tegra-powered Drive PX released last year. The Drive PX 2 represents a major computational power jump with 12 CPU cores and two discrete "Pascal"-based GPUs! NVIDIA has not revealed the full specifications yet, but they have made certain details available. There are two Tegra SoCs along with two GPUs that are liquid cooled. The liquid cooling consists of a large metal block with copper tubing winding through it and then passing into what looks to be external connectors that attach to a completed cooling loop (an exterior radiator, pump, and reservoir).

There are a total of 12 CPU cores including eight ARM Cortex A57 cores and four "Denver" cores. The discrete graphics are based on the 16nm FinFET process and will use the company's upcoming Pascal architecture. The total package will draw a maximum of 250 watts and will offer up to 8 TFLOPS of computational horsepower and 24 trillion "deep learning operations per second." That last number relates to the number of special deep learning instructions the hardware can process per second which, if anything, sounds like an impressive amount of power when it comes to making connections and analyzing data to try to classify it. Drive PX 2 is, according to NVIDIA, 10 times faster than it's predecessor at running these specialized instructions and has nearly 4 times the computational horsepower when it comes to TLOPS.

Similar to the original Drive PX, the driving AI platform can accept and process the inputs of up to 12 video cameras. It can also handle LiDAR, RADAR, and ultrasonic sensors. NVIDIA compared the Drive PX 2 to the TITAN X in its ability to process 2,800 images per second versus the consumer graphics card's 450 AlexNet images which while possibly not the best comparison does make it look promising.

NVIDIA DRIVE PX 2 DRIVEWORKS.jpg

Neural networks and machine learning are at the core of what makes autonomous vehicles possible along with hardware powerful enough to take in a multitude of sensor data and process it fast enough. The software side of things includes the DriveWorks development kit which includes specialized instructions and a neural network that can detect objects based on sensor input(s), identify and classify them, determine the positions of objects relative to the vehicle, and calculate the most efficient path to the destination.

Specifically, in the press release NVIDIA stated:

"This complex work is facilitated by NVIDIA DriveWorks™, a suite of software tools, libraries and modules that accelerates development and testing of autonomous vehicles. DriveWorks enables sensor calibration, acquisition of surround data, synchronization, recording and then processing streams of sensor data through a complex pipeline of algorithms running on all of the DRIVE PX 2's specialized and general-purpose processors. Software modules are included for every aspect of the autonomous driving pipeline, from object detection, classification and segmentation to map localization and path planning."

DIGITS is the platform used to train the neural network that is then used by the Drive PX 2 hardware. The software is purportedly improving in both accuracy and training time with NVIDIA achieving a 96% accuracy rating at identifying traffic signs based on the traffic sign database from Ruhr University Bochum after a training session lasting only 4 hours as opposed to training times of days or even weeks.

NVIDIA claims that the initial Drive PX has been picked up by over 50 development teams (automakers, universities, software developers, et al) interested in autonomous vehicles. Early access to development hardware is expected to be towards the middle of the year with general availability of final hardware in Q4 2016.

The new Drive PX 2 is getting a serious hardware boost with the inclusion of two dedicated graphics processors (the Drive PX was based around two Tegra X1 SoCs), and that should allow automakers to really push what's possible in real time and push the self-driving car a bit closer to reality and final (self) drive-able products. I'm excited to see that vision come to fruition and am looking forward to seeing what this improved hardware will enable in the auto industry!

Coverage of CES 2016 is brought to you by Logitech!

PC Perspective's CES 2016 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Source: NVIDIA

Meet the OberonStation, kid friendly and powered with the son of Pascal

Subject: General Tech | December 3, 2015 - 12:41 PM |
Tagged: OberonStation, pascal, oberon

To paraphrase Barbie, "Linux is hard".  Present a child with a Linux powered Pi of whichever flavour you like and you will spend a lot more time trying to explain why they have to do things a certain way instead of letting them create on their own.  The OberonStation was released at the same time as the Pi Zero we have heard about but it has a significant difference.  It uses a descendent of the Pascal programming language, which some readers may remember for both the OS and the programs which will run on the OberonStation.  This simplifies things greatly and while it will limit what the device can do compared to a Pi it also means it is a better teaching tool for young programmers who won't have to learn the odd and twisted world of Linux ... or at least not yet.

The Register compares it to learning on a ZX Spectrum or Amiga 600, simple enough to grasp but yet useful enough to give you a solid foundation in programming practices and functions.  This will make it more interesting and accessible for youth you want to corrupt with thoughts of a future in programming and electronics.  It is unfortunately sold out, if you are still interested in turning your kids or young relatives to the dark side consider one of the littleBits kits available at MAKE such as the Deluxe Kit, it is a great way to introduce them to electronics and to get some nifty devices out of the deal as well!

ObStAnato.png

"Two tiny, inexpensive, single-board educational computers just shipped. One has had lots of coverage already, but the odds are you've never heard of the other machine. However, the idea behind the obscure one is more important."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register

Podcast #370 - Gigabyte Z170X-Gaming G1, New Microsoft Surface products, NVIDIA Pascal Rumors and more!

Subject: General Tech | October 8, 2015 - 03:57 PM |
Tagged: podcast, video, gigabyte, z170x gaming g1, Skylake, microsoft, surface pro 4, surface book, Android, ios, iphone 6s, Samsung, 840 evo, msata, dell, UP3216Q, nvidia, pascal

PC Perspective Podcast #370 - 10/08/2015

Join us this week as we discuss the Gigabyte Z170X-Gaming G1, New Microsoft Surface products, NVIDIA Pascal Rumors and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Allyn Malventano

Program length: 1:31:05

  1. Week in Review:
  2. 0:30:00 This episode of the PC Perspective Podcast is brought to you by Audible, the world's leading provider of audiobooks with more than 180,000 downloadable titles across all types of literature including fiction, nonfiction, and periodicals. For your free audiobook, go to audible.com/pcper
  3. News item of interest:
  4. Hardware/Software Picks of the Week:
    1. Ryan: iPhone 6s Stallion
  5. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Manufacturer: NVIDIA

GPU Enthusiasts Are Throwing a FET

NVIDIA is rumored to launch Pascal in early (~April-ish) 2016, although some are skeptical that it will even appear before the summer. The design was finalized months ago, and unconfirmed shipping information claims that chips are being stockpiled, which is typical when preparing to launch a product. It is expected to compete against AMD's rumored Arctic Islands architecture, which will, according to its also rumored numbers, be very similar to Pascal.

This architecture is a big one for several reasons.

nvidia-2015-pascal-zoomed.jpg

Image Credit: WCCFTech

First, it will jump two full process nodes. Current desktop GPUs are manufactured at 28nm, which was first introduced with the GeForce GTX 680 all the way back in early 2012, but Pascal will be manufactured on TSMC's 16nm FinFET+ technology. Smaller features have several advantages, but a huge one for GPUs is the ability to fit more complex circuitry in the same die area. This means that you can include more copies of elements, such as shader cores, and do more in fixed-function hardware, like video encode and decode.

That said, we got a lot more life out of 28nm than we really should have. Chips like GM200 and Fiji are huge, relatively power-hungry, and complex, which is a terrible idea to produce when yields are low. I asked Josh Walrath, who is our go-to for analysis of fab processes, and he believes that FinFET+ is probably even more complicated today than 28nm was in the 2012 timeframe, which was when it launched for GPUs.

It's two full steps forward from where we started, but we've been tiptoeing since then.

NVIDIA-2015-Pascal-GPU-2015.jpg

Image Credit: WCCFTech

Second, Pascal will introduce HBM 2.0 to NVIDIA hardware. HBM 1.0 was introduced with AMD's Radeon Fury X, and it helped in numerous ways -- from smaller card size to a triple-digit percentage increase in memory bandwidth. The 980 Ti can talk to its memory at about 300GB/s, while Pascal is rumored to push that to 1TB/s. Capacity won't be sacrificed, either. The top-end card is expected to contain 16GB of global memory, which is twice what any console has. This means less streaming, higher resolution textures, and probably even left-over scratch space for the GPU to generate content in with compute shaders. Also, according to AMD, HBM is an easier architecture to communicate with than GDDR, which should mean a savings in die space that could be used for other things.

Third, the architecture includes native support for three levels of floating point precision. Maxwell, due to how limited 28nm was, saved on complexity by reducing 64-bit IEEE 754 decimal number performance to 1/32nd of 32-bit numbers, because FP64 values are rarely used in video games. This saved transistors, but was a huge, order-of-magnitude step back from the 1/3rd ratio found on the Kepler-based GK110. While it probably won't be back to the 1/2 ratio that was found in Fermi, Pascal should be much better suited for GPU compute.

NVIDIA-2015-Pascal-GPU_Compute-Performance-635x357.jpg

Image Credit: WCCFTech

Mixed precision could help video games too, though. Remember how I said it supports three levels? The third one is 16-bit, which is half of the format that is commonly used in video games. Sometimes, that is sufficient. If so, Pascal is said to do these calculations at twice the rate of 32-bit. We'll need to see whether enough games (and other applications) are willing to drop down in precision to justify the die space that these dedicated circuits require, but it should double the performance of anything that does.

So basically, this generation should provide a massive jump in performance that enthusiasts have been waiting for. Increases in GPU memory bandwidth and the amount of features that can be printed into the die are two major bottlenecks for most modern games and GPU-accelerated software. We'll need to wait for benchmarks to see how the theoretical maps to practical, but it's a good sign.

Podcast #367 - AMD R9 Nano, a Corsair GTX 980Ti, NVIDIA Pascal Rumors and more!

Subject: General Tech | September 17, 2015 - 12:00 PM |
Tagged: xps 12, video, TSMC, Steam Controller, r9 nano, podcast, pascal, nvidia, msi, hdplex h5, gtx 980ti sea hawk, fury x, Fiji, dell, corsair, amd

PC Perspective Podcast #367 - 09/17/2015

Join us this week as we discuss the AMD R9 Nano, a Corsair GTX 980Ti, NVIDIA Pascal Rumors and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Report: TSMC To Produce NVIDIA Pascal On 16 nm FinFET

Subject: Graphics Cards | September 16, 2015 - 09:16 AM |
Tagged: TSMC, Samsung, pascal, nvidia, hbm, graphics card, gpu

According to a report by BusinessKorea TSMC has been selected to produce the upcoming Pascal GPU after initially competing with Samsung for the contract.

PascalBoard.jpg

Though some had considered the possibility of both Samsung and TSMC sharing production (albeit on two different process nodes, as Samsung is on 14 nm FinFET), in the end the duties fall on TSMC's 16 nm FinFET alone if this report is accurate. The move is not too surprising considering the longstanding position TSMC has maintained as a fab for GPU makers and Samsung's lack of experience in this area.

The report didn't make the release date for Pascal any more clear, naming it "next year" for the new HBM-powered GPU, which will also reportedly feature 16 GB of HBM 2 memory for the flagship version of the card. This would potentially be the first GPU released at 16 nm (unless AMD has something in the works before Pascal's release), as all current AMD and NVIDIA GPUs are manufactured at 28 nm.

Rumor: NVIDIA Pascal up to 17 Billion Transistors, 32GB HBM2

Subject: Graphics Cards | July 24, 2015 - 12:16 PM |
Tagged: rumor, pascal, nvidia, HBM2, hbm, graphics card, gpu

An exclusive report from Fudzilla claims some outlandish numbers for the upcoming NVIDIA Pascal GPU, including 17 billion transistors and a massive amount of second-gen HBM memory.

According to the report:

"Pascal is the successor to the Maxwell Titan X GM200 and we have been tipped off by some reliable sources that it will have  more than a double the number of transistors. The huge increase comes from  Pascal's 16 nm FinFET process and its transistor size is close to two times smaller."

PascalBoard.jpg

The NVIDIA Pascal board (Image credit: Legit Reviews)

Pascal's 16nm FinFET production will be a major change from the existing 28nm process found on all current NVIDIA GPUs. And if this report is accurate they are taking full advantage considering that transistor count is more than double the 8 billion found in the TITAN X.

PlanarFinFET.jpg

(Image credit: Fudzilla)

And what about memory? We have long known that Pascal will be NVIDIA's first forray into HBM, and Fudzilla is reporting that up to 32GB of second-gen HBM (HBM2) will be present on the highest model, which is a rather outrageous number even compared to the 12GB TITAN X.

"HBM2 enables cards with 4 HBM 2.0 cards with 4GB per chip, or four HBM 2.0 cards with 8GB per chips results with 16GB and 32GB respectively. Pascal has power to do both, depending on the SKU."

Pascal is expected in 2016, so we'll have plenty of time to speculate on these and doubtless other rumors to come.

Source: Fudzilla