Apple Announces iPhone 7 and 7 Plus with A10 SoC

Subject: Mobile | September 7, 2016 - 09:16 PM |
Tagged: smartphone, mobile, iPhone 7 Plus, iPhone 7, iphone, DCI P3, apple, a10

Another Apple announcement is in the books, and with it comes the expected refresh to the iPhone lineup. The new iPhone 7 and 7 Plus offer some notable upgrades from the previous models, though it's the lack of a 3.5 mm headphone jack that has been getting much of the attention.

iphone701.png

Looking past the omission of the headphone jack for a moment, what exactly is new and noteworthy here? For starters, the iPhone 7 brings a new SoC to the table with the A10, a new design that is Apple's first foray into a "big.LITTLE" type of configuration. Unlike the A9 SoC's processor, a dual-core 1.85 GHz design, the A10 now offers a pair of high-performance cores, and a pair of high-efficiency cores that Apple says require only 1/5 of the larger pair's power. This sort of processor configuration is obviously similar to a number of existing ARM designs, which similarly combine faster and slower cores in an effort to reduce power consumption - though the 1/5 number is significant. It will be enlightening to see what the actual core speeds are - as well as particulars on the GPU, which is "50% faster" than the A9's PowerVR GT7600.

iphone7.jpg

Other major updates include the cameras, which now features optical image stabilization (OIS) in the regular 7 as well as the 7 Plus (it was a 6/6s Plus-exclusive feature previously). The camera - or rather cameras - on the iPhone 7 Plus provide separate wide-angle and telephoto lenses, and allow for some powerful depth-of-field effects as demoed during the presentation. The displays contain another significant update - but not in resolution. The previous (low) 750x1344 resolution from the 6s remains in the iPhone 7, with the 7 Plus sticking to 1080x1920. The upgrade comes from the backlighting, which now provides 25% greater brightness and much wider color from the DCI P3 color space.

iphone702.png

The lack of a 3.5 mm headphone jack was rumored for months leading up to today's announcement, and of course it will be a controversial topic. The Lightning connector is the only port on the iPhone 7/7 Plus, and Lightning-connected earbuds are included along with a 3.5 mm adapter (which also includes the DAC and headphone amp). The new haptic motor for the new non-mechanical home button is partly to blame for the omission of the headphone jack, but might also have been removed as part of the process to make the iPhone water resistant - a first for Apple.

iphone704.png

Wireless earbuds ("AirPods") were also announced, which look pretty much like the existing "EarPods" with the cord cut off. One final note on sound: the new iPhones have stereo speakers for the first time, with sound claimed to be 50% louder than previous, and now emanating from both ends of the phone.

iphone705.png

The family of iPhones now includes the new iPhone 7 and 7 Plus, along with existing 6s, 6s Plus, and the iPhone SE. In a surprising move, Apple announced that they would upgrade last year's 6s models to shipping with double the base storage - 32GB vs. 16GB - for the same price.

Pre-orders for the new iPhones begin on September 9th, with pricing beginning at $649 for the 32GB iPhone 7, and $769 for the 32GB iPhone 7 Plus.

Source: Apple

Qualcomm Releases the Snapdragon 821 Mobile Processor

Subject: Processors, Mobile | August 31, 2016 - 07:30 AM |
Tagged: SoC, Snapdragon 821, snapdragon, SD821, qualcomm, processor, mobile, adreno

Qualcomm has officially launched the Snapdragon 821 SoC, an upgraded successor to the existing Snapdragon 820 found in such phones as the Samsung Galaxy S7.

snapdragon821_1.jpg

"With Snapdragon 820 already powering many of the premier flagship Android smartphones today, Snapdragon 821 is now poised to become the processor of choice for leading smartphones and devices for this year’s holiday season. Qualcomm Technologies’ engineers have improved Snapdragon 821 in three key areas to ensure Snapdragon 821 maintains the level of industry leadership introduced by its predecessor."

Specifications were previously revealed when the Snapdragon 821 was announced in July, with a 10% increase on the CPU clocks (2.4 GHz, up from the previous 2.2 GHz max frequency). The Adreno 530 GPU clock increases 5%, to 650 MHz from 624 MHz. In addition to improved performance from CPU and GPU clock speed increases, the SD821 is said to offer lower power consumption (estimated at 5% compared to the SD820), and offers new functionality including improved auto-focus capability.

snapdragon-821.jpg

From Qualcomm:

Enhanced overall user experience:

The Snapdragon 821 has been specifically tuned to support a more responsive user experience when compared with the 820, including:

  • Shorter boot times: Snapdragon 821 powered devices can boot up to 10 percent faster.
  • Faster application launch times: Snapdragon 821 can reduce app load times by up to 10 percent.
  • Smoother, more responsive user interactions: UI optimizations and performance enhancements designed to allow users to enjoy smoother scrolling and more responsive browsing performance.

Improved performance and power consumption:

  • CPU speeds increase: As we previously announced, the 821 features Qualcomm Kryo CPU speeds up to 2.4GHz, representing an up to 10 percent improvement in performance over Snapdragon 820.
  • GPU speeds increase: The Qualcomm Adreno GPU received a 5 percent speed increase over Snapdragon 820.
  • Power savings: The 821 is engineered to deliver an incremental 5 percent power savings when comparing standard use case models. This power savings can extend battery life and support OEMs interested in reducing battery size for slimmer phones.

New features and functionality:

  • Snapdragon 821 introduces several new features and capabilities, offering OEMs new options to create more immersive and engaging user experiences, including support for:
  • Snapdragon VR SDK (Software Development Kit): Offers developers a superior mobile VR toolset, provides compatibility with the Google Daydream platform, and access to Snapdragon 821’s powerful heterogeneous architecture. Snapdragon VR SDK supports a superior level of visual and audio quality and more immersive virtual reality and gaming experiences in a mobile environment.
  • Dual PD (PDAF): Offers significantly faster image autofocus speeds under a wide variety of conditions when compared to single PDAF solutions.
  • Extended Laser Auto-Focus Ranging: Extends the visible focusing range, improving laser focal accuracy over Snapdragon 820.
  • Android Nougat OS: Snapdragon 821 (as well as the 820) will support the latest Android operating system when available, offering new features, expanded compatibility, and additional security compared to prior Android versions.

Qualcomm says the ASUS ZenFone 3 Deluxe is the first phone to use this new Snapdragon 821 SoC while other OEMs will be working on designs implementing the upgraded SoC.

Source: Qualcomm

Podcast #413 - NVIDIA Pascal Mobile, ARM and Intel partner on 10nm, Flash Memory Summit and more!

Subject: Editorial | August 18, 2016 - 02:20 PM |
Tagged: video, podcast, pascal, nvidia, msi, mobile, Intel, idf, GTX 1080, gtx 1070, gtx 1060, gigabyte, FMS, Flash Memory Summit, asus, arm, 10nm

PC Perspective Podcast #413 - 08/18/2016

Join us this week as we discuss the new mobile GeForce GTX 10-series gaming notebooks, ARM and Intel partnering on 10nm, Flash Memory Summit and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Allyn Malventano, Sebastian Peak, Josh Walrath and Jeremy Hellstrom

Program length: 1:29:39
  1. Week in Review:
  2. This episode of PC Perspective is brought to you by Casper!! Use code “PCPER”
  3. News items of interest:
    1. 0:42:05 Final news from FMS 2016
  4. Hardware/Software Picks of the Week
    1. Ryan: VR Demi Moore
  5. Closing/outro

Author:
Manufacturer: NVIDIA

Take your Pascal on the go

Easily the strongest growth segment in PC hardware today is in the adoption of gaming notebooks. Ask companies like MSI and ASUS, even Gigabyte, as they now make more models and sell more units of notebooks with a dedicated GPU than ever before.  Both AMD and NVIDIA agree on this point and it’s something that AMD was adamant in discussing during the launch of the Polaris architecture.

pascalnb-2.jpg

Both AMD and NVIDIA predict massive annual growth in this market – somewhere on the order of 25-30%. For an overall culture that continues to believe the PC is dying, seeing projected growth this strong in any segment is not only amazing, but welcome to those of us that depend on it. AMD and NVIDIA have different goals here: GeForce products already have 90-95% market share in discrete gaming notebooks. In order for NVIDIA to see growth in sales, the total market needs to grow. For AMD, simply taking back a portion of those users and design wins would help its bottom line.

pascalnb-4.jpg

But despite AMD’s early talk about getting Polaris 10 and 11 in mobile platforms, it’s NVIDIA again striking first. Gaming notebooks with Pascal GPUs in them will be available today, from nearly every system vendor you would consider buying from: ASUS, MSI, Gigabyte, Alienware, Razer, etc. NVIDIA claims to have quicker adoption of this product family in notebooks than in any previous generation. That’s great news for NVIDIA, but might leave AMD looking in from the outside yet again.

Technologically speaking though, this makes sense. Despite the improvement that Polaris made on the GCN architecture, Pascal is still more powerful and more power efficient than anything AMD has been able to product. Looking solely at performance per watt, which is really the defining trait of mobile designs, Pascal is as dominant over Polaris as Maxwell was to Fiji. And this time around NVIDIA isn’t messing with cut back parts that have brand changes – GeForce is diving directly into gaming notebooks in a way we have only seen with one release.

g752-open.jpg

The ASUS G752VS OC Edition with GTX 1070

Do you remember our initial look at the mobile variant of the GeForce GTX 980? Not the GTX 980M mind you, the full GM204 operating in notebooks. That was basically a dry run for what we see today: NVIDIA will be releasing the GeForce GTX 1080, GTX 1070 and GTX 1060 to notebooks.

Continue reading our preview of the new GeForce GTX 1080, 1070 and 1060 mobile Pascal GPUs!!

AMD Pre-Announces 7th Gen A-Series SOC

Subject: Processors | April 5, 2016 - 06:30 AM |
Tagged: mobile, hp, GCN, envy, ddr4, carrizo, Bristol Ridge, APU, amd, AM4

Today AMD is “pre-announcing” their latest 7th generation APU.  Codenamed “Bristol Ridge”, this new SOC is based off of the Excavator architecture featured in the previous Carrizo series of products.  AMD provided very few hints as to what was new and different in Bristol Ridge as compared to Carrizo, but they have provided a few nice hints.

br_01.png

They were able to provide a die shot of the new Bristol Ridge APU and there are some interesting differences between it and the previous Carrizo. Unfortunately, there really are no changes that we can see from this shot. Those new functional units that you are tempted to speculate about? For some reason AMD decided to widen out the shot of this die. Those extra units around the border? They are the adjacent dies on the wafer. I was bamboozled at first, but happily Marc Sauter pointed it out to me. No new functional units for you!

carrizo_die.jpg

This is the Carrizo shot. It is functionally identical to what we see with Bristol Ridge.

AMD appears to be using the same 28 nm HKMG process from GLOBALFOUNDRIES.  This is not going to give AMD much of a jump, but from information in the industry GLOBALFOUNDRIES and others have put an impressive amount of work into several generations of 28 nm products.  TSMC is on their third iteration which has improved power and clock capabilities on that node.  GLOBALFOUNDRIES has continued to improve their particular process and likely Bristol Ridge is going to be the last APU built on that node.

br_02.png

All of the competing chips are rated at 15 watts TDP. Intel has the compute advantage, but AMD is cleaning up when it comes to graphics.

The company has also continued to improve upon their power gating and clocking technologies to keep TDPs low, yet performance high.  AMD recently released the Godavari APUs to the market which exhibit better clocking and power characteristics from the previous Kaveri.  Little was done on the actual design, rather it was improved process tech as well as better clock control algorithms that achieved these advances.  It appears as though AMD has continued this trend with Bristol Ridge.

We likely are not seeing per clock increases, but rather higher and longer sustained clockspeeds providing the performance boost that we are seeing between Carrizo and Bristol Ridge.  In these benchmarks AMD is using 15 watt TDP products.  These are mobile chips and any power improvements will show off significant gains in overall performance.  Bristol Ridge is still a native quad core part with what looks to be an 8 module GCN unit.

br_03.png

Again with all three products at a 15 watt TDP we can see that AMD is squeezing every bit of performance it can with the 28 nm process and their Excavator based design.

The basic core and GPU design look relatively unchanged, but obviously there were a lot of tweaks applied to give the better performance at comparable TDPs.  

AMD is announcing this along with the first product that will feature this APU.  The HP Envy X360.  This convertible tablet offers some very nice features and looks to be one of the better implementations that AMD has seen using its latest APUs.  Carrizo had some wins, but taking marketshare back from Intel in the mobile space has been tortuous at best. AMD obviously hopes that Bristol Ridge in the sub-35 watt range will continue to show fight for the company in this important market.  Perhaps one of the more interesting features is the option for the PCIe SSD.  Hopefully AMD will send out a few samples so we can see what a more “premium” type convertible can do with the AMD silicon.

br_04.png

The HP Envy X360 convertible in all of its glory.

Bristol Ridge will be coming to the AM4 socket infrastructure in what appears to be a Computex timeframe.  These parts will of course feature higher TDPs than what we are seeing here with the 15 watt unit that was tested.  It seems at that time AMD will announce the full lineup from top to bottom and start seeding the market with AM4 boards that will eventually house the “Zen” CPUs that will show up in late 2016.

Source: AMD
Author:
Subject: Editorial
Manufacturer: AMD

Fighting for Relevance

AMD is still kicking.  While the results of this past year have been forgettable, they have overcome some significant hurdles and look like they are improving their position in terms of cutting costs while extracting as much revenue as possible.  There were plenty of ups and downs for this past quarter, but when compared to the rest of 2015 there were some solid steps forward here.

AMD-Logo.jpg

The company reported revenues of $958 million, which is down from $1.06 billion last quarter.  The company also recorded a $103 million loss, but that is down significantly from the $197 million loss the quarter before.  Q3 did have a $65 million write-down due to unsold inventory.  Though the company made far less in revenues, they also shored up their losses.  The company is still bleeding, but they still have plenty of cash on hand for the next several quarters to survive.  When we talk about non-GAAP figures, AMD reports a $79 million loss for this past quarter.

For the entire year AMD recorded $3.99 billion in revenue with a net loss of $660 million.  This is down from FY 2014 revenues of $5.51 billion and a net loss of $403 million.  AMD certainly is trending downwards year over year, but they are hoping to reverse that come 2H 2016.

amd-financial-analyst-day-2015-11-1024.jpg

Graphics continues to be solid for AMD as they increased their sales from last quarter, but are down year on year.  Holiday sales were brisk, but with only the high end Fury series being a new card during this season, the impact of that particular part was not as great as compared to the company having a new mid-range series like the newly introduced R9 380X.  The second half of 2016 will see the introduction of the Polaris based GPUs for both mobile and desktop applications.  Until then, AMD will continue to provide the current 28 nm lineup of GPUs to the market.  At this point we are under the assumption that AMD and NVIDIA are looking at the same timeframe for introducing their next generation parts due to process technology advances.  AMD already has working samples on Samsung’s/GLOBALFOUNDRIES 14nm LPP (low power plus) that they showed off at CES 2016.

Click here to continue reading about AMD's Q4 2015 and FY 2015 results!

Subject: Mobile
Manufacturer: Qualcomm

Introduction and CPU Performance

We had a chance this week to go hands-on with the Snapdragon 820, the latest flagship SoC from Qualcomm, in a hardware session featuring prototype handsets powered by this new silicon. How did it perform? Read on to find out!

820_2.png

As you would expect from an all-new flagship part, the Snapdragon 820 offers improvements in virtually every category compared to their previous products. And with the 820 Qualcomm is emphasizing not only performance, but lower power consumption with claims of anywhere from 20% to 10x better efficiency across the components that make up this new SoC. And part of these power savings will undoubtedly come as the result of Qualcomm’s decision to move to a quad-core design with the 820, rather than the 8-core design of the 810.

So what exactly does comprise a high-end SoC like the Snapdragon 820? Ryan covered the launch in detail back in November (and we introduced aspects of the new SoC in a series of articles leading up to the launch). In brief, the Snapdragon 820 includes a custom quad-core CPU (Kryo), the Andreno 530 GPU, a new DSP (Hexagon 680), new ISP (Spectra), and a new LTE modem (X12). The previous flagship Snapdragon 810 used stock ARM cores (Cortex-A57, Cortex-A53) in a big.LITTLE configuration, but for various reasons Qualcomm has chosen not to introduce another 8-core SoC with this new product.

820_1.png

The four Kryo CPU cores found in the Snapdragon 820 can operate at speeds of up to 2.2 GHz, and since is half the number of the octo-core Snapdragon 810, the IPC (instructions per clock) of this new part will help determine how competitive the SD820's performance will be; but there’s a lot more to the story. This SoC design placed equal emphasis on all components therein, and the strategy with the SD820 seems to be leveraging the capability of the advanced signal processing (Hexagon 680) which should help offload the work to allow the CPU to work with greater efficiency, and at lower power.

Continue reading our performance preview of the new Snapdragon 820 SoC!!

Samsung Announces Exynos 8 Octa 8890 Application Processor

Subject: Processors, Mobile | November 12, 2015 - 09:30 AM |
Tagged: SoC, smartphone, Samsung Galaxy, Samsung, mobile, Exynos 8890, Exynos 8 Octa, Exynos 7420, Application Processor

Coming just a day after Qualcomm officially launched their Snapdragon 820 SoC, Samsung is today unveiling their latest flagship mobile part, the Exynos 8 Octa 8890.

8890.png

The Exynos 8 Octa 8890 is built on Samsung’s 14 nm FinFET process like the previous Exynos 7 Octa 7420, and again is based on the a big.LITTLE configuration; though the big processing cores are a custom design this time around. The Exynos 7420 was comprised of four ARM Cortex A57 cores and four small Cortex A53 cores, and while the small cores in the 8890 are again ARM Cortex A53, the big cores feature Samsung’s “first custom designed CPU based on 64-bit ARMv8 architecture”.

“With Samsung’s own SCI (Samsung Coherent Interconnect) technology, which provides cache-coherency between big and small cores, the Exynos 8 Octa fully utilizes benefits of big.LITTLE structure for efficient usage of the eight cores. Additionally, Exynos 8 Octa is built on highly praised 14nm FinFET process. These all efforts for Exynos 8 Octa provide 30% more superb performance and 10% more power efficiency.”

biglittle.png

Another big advancement for the Exynos 8 Octa is the integrated modem, which provides Category 12/13 LTE with download speeds (with carrier aggregation) of up to 600 Mbps, and uploads up to 150 Mbps. This might sound familiar, as it mirrors the LTE Release 12 specs of the new modem in the Snapdragon 820.

Video processing is handled by the Mali-T880 GPU, moving up from the Mali-T760 found in the Exynos 7 Octa. The T880 is “the highest performance and the most energy-efficient mobile GPU in the Mali family”, with up to 1.8x the performance of the T760 while being 40% more energy-efficient. 

Samsung will be taking this new SoC into mass production later this year, and the chip is expected to be featured in the company’s upcoming flagship Galaxy phone.

Full PR after the break.

Source: Samsung

Snapdragon 820 Features Qualcomm's New X12 Modem: Fastest LTE To Date

Subject: Mobile | September 30, 2015 - 02:33 PM |
Tagged: X12 Modem, SoC, snapdragon 820, qualcomm, phones, mu-mimo, mobile, LTE, cell phones

The upcoming Snapdragon 820 is shaping up to be a formidable SoC after the disappointing response to the previous flagship, the Snapdragon 810, which was in far fewer devices than expected for reasons still shrouded in mystery and speculation. One of the biggest aspects of the upcoming 820 is Qualcomm’s new X12 modem, which will provide the most advanced LTE connectivity seen to date when the SoC launches. The X12 features CAT 12 LTE downlink speeds for up to 600 Mbps, and CAT 13 on the uplink for up to 150 Mbps.

LTE connectivity isn’t the only new thing here, as we see from this slide there is also tri-band Wi-Fi supporting 2x2 MU-MIMO.

X12_MODEM.png

“This is the first publicly announced processor for use in mobile devices to support LTE Category 12 in the downlink and Category 13 in the uplink, providing up to 33 percent and 200 percent improvement over its predecessor’s download and upload speeds, respectively.”

The specifications for this new modem are densely packed:

  • Cat 12 (up to 600 Mbps) in the downlink
  • Cat 13 (up to 150 Mbps) in the uplink
  • Up to 4x4 MIMO on one downlink LTE carrier
  • 2x2 MU-MIMO (802.11ac)
  • Multi-gigabit 802.11ad
  • LTE-U and LTE+Wi-Fi Link Aggregation (LWA)
  • Next Gen HD Voice and Video calling over LTE and Wi-Fi
  • Call Continuity across Wi-Fi, LTE, 3G, and 2G
  • RF front end innovations
  • Advanced Closed Loop Antenna Tuner
  • Qualcomm RF360™ front end solution with CA
  • Wi-Fi/LTE antenna sharing

Rumored phones that could end up running the Snapdragon 820 with this X12 modem include the Samsung Galaxy S7 and around 30 other devices, though final word is of course pending on shipping hardware.

Source: Qualcomm

Qualcomm Announces Quick Charge 3.0

Subject: Mobile | September 24, 2015 - 07:55 PM |
Tagged: usb, snapdragon 820, Quick Charge 3.0, Quick Charge, qualcomm, mobile, battery charger

Qualcomm has announced Quick Charge 3.0, the latest iteration of their fast battery charging technology. The new version is said to not only further improve battery charging times, but also better maintain battery health and reduce temperatures.

One of the biggest issues with fast battery charging is the premature failure of the battery cells; something my first Nexus 6 (which was replaced due to a bad battery) can attest to. The new 3.0 standard adds "Battery Saver Technology" (BST) which constantly varies the current delivery rate based on what the battery can safely accept, thus preventing damage to the cells. This new version of Quick Charge also claims to offer lower temps while charging, which could be partly the result of this variable current delivery.

The other change comes from "Intelligent Negotiation for Optimum Voltage" (INOV), which can vary the voltage delivery anywhere from 3.6V to 20V in 200mV increments depending on the device's negotiated connection. INOV will allow Quick Charge 3.0 to charge a full 2x faster than the original Quick Charge 1.0 (it's 1.5x faster than QC 2.0), and 4x over standard USB charging as it provides up to 60W to compatible devices.

This new Quick Charge 3.0 technology will be available soon with devices featuring upcoming Qualcomm SoCs such as the Snapdragon 820.