Podcast #395 - AMD Driver Quality, New Intel and Micron SSDs, Corsair's SPEC-ALPHA and more!

Subject: General Tech | April 14, 2016 - 04:42 PM |
Tagged: video, TMX, Thrustmaster, podcast, omega, micron, Lian-Li, Intel, game ready, crimson, catalyst, bx300, amd

PC Perspective Podcast #395 - 04/14/2016

Join us this week as we discuss AMD Driver Quality, New Intel and Micron SSDs, Corsair's SPEC-ALPHA and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Lenovo!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, Allyn Malventano, and Sebastian Peak

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Micron no longer has NVMe envy

Subject: General Tech | April 14, 2016 - 04:28 PM |
Tagged: Ryan's Law, NVMe, micron

Micron has announced their own PCIe 3.0 NVMe devices today, in HHHL, M.2 and 2.5" form factors.  The specifications are a little sparse at the moment, we do not know the flash which resides within the devices nor the endurance differences between the 7100 PRO series which is designed for read heavy scenarios or the 7100 MAX which is for mixed usage.  In addition to the 7100 series, they also announced the 9100 series which ranges in size from 800GB up to 3.2TB and has theoretical sequential reads of 3GB/s and writes of 2GB/s.  The Register was not provided with any specific pricing but Micron suggested the 7100 series could be priced similarly to SATA drives, while the 9100 series will obviously lie outside the boundaries of Ryan's Law.

You should also take a look at the information Al gathered while he was at the product launch.

micron_nvme_ssds_performance_650.jpg

"These NVMe SSDs complement Micron's existing S600DC SAS SSDs, which are now shipping in volume. The 7100 is the smaller product and the 9100 its big brother. Both have a PCIe gen 3 NVMe interface, which is faster than the 12 Gbit/s SAS interface used by the S600DC flash drives."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register

Micron and Intel Launch a Wave of Enterprise Storage Products

Subject: Storage | April 12, 2016 - 03:30 PM |
Tagged: vmware, ssd, S600DC, S3100, P3520, P3320, Nexenta, micron, Intel, D3700, D3600, Ceph, 9100, 7100, 5410s, 540s, 5400s

There has been a lot of recent shuffling about in the world of enterprise storage. I’m writing up this post from a Micron product launch event in Austin, Texas. Today they are launching a round of enterprise SSD products. These lines cover the full storage gamut from M.2 to U.2 to HHHL. While prior Micron SSDs were bottlenecked by AHCI and PCIe 2.0, these new lines are using Marvell controllers and are capable of PCIe 3.0 x4 speeds (plus NVMe).

9100.jpg

The workhorse of the lineup is the 9100, which will be available in HHHL and U.2 2.5” 15mm form factors.

7100.jpg

Lighter workloads are handled by the 7100 series, which is available in U.2 2.5” 7mm and M.2 22110. The slower serial bus remains covered by their S600DC SAS SSDs.

Micron is not the only company pushing further into this space. Less than two weeks ago, Intel ran their ‘Cloud Day’ event, where they launched a new Xeon CPU and a plethora of new SSDs, some of which were based on IMFT 3D NAND tech (SSD DC P3320). Intel also launched the client 540s and business 5400s product lines, which are based on Silicon Motion SM2256 controllers driving SK Hynix hybrid (SLC+TLC) flash. While these controllers and flash are coming from external sources, they must still pass Intel’s rigorous qualification and compatibility validation testing, so failure rates should be kept to a minimum.

Another aspect of this Micron launch day is their push into the production of not only SSDs, but all-flash storage devices. Dubbed ‘Micron Accelerated Solutions’, these are devices built, serviced, and supported by Micron. They naturally contain Micron SSDs, but also draw on other vendors like Supermicro and Nexenta. The products range from VMware SANs, to Ceph solutions capable of 1 million IOPS and 140 Gbps, to software-defined storage. I’ll be sitting through briefings and asking questions about these products when this post is set to go live, and I will update this space with any additional juicy tidbits once we wrap up for the day.

**Update**

Apparently we are going to see consumer IMFT 3D TLC NAND *this month* in the form of a Crucial MX300!

DSC00512.jpg

...and in a couple of months we will see Crucial M.2 PCIe SSDs:

DSC00513.jpg

There was also some discussion on XPoint (spoken 'cross point') and where Micron sees this new storage being implemented. Expected to see scaled production in 2017 and 2018, XPoint is non-volatile (like flash) but extremely fast (like DRAM). There was not much said beyond generalities, but they did have a wafer, and you know I love die shots:

DSC00531.jpg

I was not permitted to get a better die shot of the wafer at this event, as the Micron rep specifically requested that journalists only use photos that were shot from stage distance. Fortunately, this was not the only event where I have photographed a XPoint wafer. Here is a photo I caught at a prior event:

DSC03304.JPG

**End update**

Here is a quick breakdown of the products launched by both Intel and Micron over the last two weeks:

Intel:

  • SSD DC P3520 and P3320
    • First SSDs to use 256Gbit/die 32-layer IMFT 3D NAND.
    • PCIe 3.0 x4 HHHL and 2.5” U.2
    • 450GB-2TB
  • SSD DC D3700 and D3600
    • PCIe 3.0 x4 2.5” U.2 dual-port design.
      • Dual-port means two hosts can access a single SSD through the use of a special backplane that merges the PCIe lanes from two separate systems into a single U.2 connector. This is a move for increased redundancy, as one system can fail and the same flash storage will still be available to the failover system.
    • 800GB-1.6TB
  • SSD DC S3100
    • SATA 2.5” SLC+TLC hybrid for enterprise
      • Intended for boot OS / caching / index storage duties
    • 120GB-1TB
  • SSD 540s and Pro 5400s
    • Silicon Motion SM2256 + SK Hynix SLC+TLC hybrid flash
    • Pro 5200s adds Intel vPro / OPAL 2.0 and Microsoft eDrive support
    • 120GB-1TB
  • SSD E 5400s and E 5410s
    • Silicon Motion SM2256 + SK Hynix flash
    • Small capacity M.2 2280 and 2.5” SATA
    • 48GB-180GB

Micron:

That’s a whole lot of flash related product launches in a very short period of time. I’m excited to see large pushes into the enterprise because that means we will see this tech trickle down to consumers and power users that much sooner!

The Micron NVMe press release was a bit light on details, so I’ve included their Accelerated Solutions release after the break.

Source: Micron

Hello, Canadians! Interested in a Relatively Cheap 1TB SSD?

Subject: Storage | March 23, 2016 - 10:16 PM |
Tagged: newegg, Mushkin, silicon motion, micron, ssd

Here's a brief post for our Canadian fans. If you have been interested in a decent, large SSD, then you might want to check out Newegg Canada. The Mushkin Enhanced Reactor 1TB is currently $100 off, which puts it at a price of $299.99 CDN plus tax and shipping. While 30c/GB might sound mundane to our neighbours to the south, the currency conversion works out to about 23c/GB USD.

mushkin-2016-reactor-cheapnewegg.jpg

Sure, it's not the fastest SSD on the market, but it's a solid, mainstream one. A 2TB version also exists, but you will be paying about $60 more than just getting two, 1TB SKUs. This version uses the Silicon Motion SM2246EN controller and Micron flash. We might end up with better or cheaper drives coming in the future, I have no idea, but this should be good for cheap, decent, and now.

Source: Newegg

Podcast #387 - ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

Subject: General Tech | February 18, 2016 - 07:16 PM |
Tagged: x16 LTE, vulkan, video, ssd, Samsung, qualcomm, podcast, pb328q, opengl, nvidia, micron, Khronos, gtx 950, asus, apple, 840 evo, 750ti, 750 evo, 3d nand

PC Perspective Podcast #387 - 02/18/2016

Join us this week as we discuss the ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Program length: 1:34:18

  1. Week in Review:
  2. 0:35:00 This episode of the PC Perspective Podcast is brought to you by Audible, the world's leading provider of audiobooks with more than 180,000 downloadable titles across all types of literature including fiction, nonfiction, and periodicals. For your free audiobook, go to audible.com/pcper
  3. News items of interest:
  4. 1:07:00 This episode of PC Perspective Podcast is brought to you by Braintree. Even the best mobile app won’t work without the right payments API. That’s where the Braintree v.0 SDK comes in. One amazingly simple integration gives you every way to pay. Try out the sandbox and see for yourself at braintree­payments.com/pcper
  5. Hardware/Software Picks of the Week
  6. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

What Micron's Upcoming 3D NAND Means for SSD Capacity, Performance, and Cost

Subject: Storage | February 14, 2016 - 07:51 PM |
Tagged: vnand, ssd, Samsung, nand, micron, Intel, imft, 768Gb, 512GB, 3d nand, 384Gb, 32 Layer, 256GB

You may have seen a wave of Micron 3D NAND news posts these past few days, and while many are repeating the 11-month old news with talks of 10TB/3.5TB on a 2.5"/M.2 form factor SSDs, I'm here to dive into the bigger implications of what the upcoming (and future) generation of Intel / Micron flash will mean for SSD performance and pricing.

progression-3-.png

Remember that with the way these capacity increases are going, the only way to get a high performance and high capacity SSD on-the-cheap in the future will be to actually get those higher capacity models. With such a large per-die capacity, smaller SSDs (like 128GB / 256GB) will suffer significantly slower write speeds. Taking this upcoming Micron flash as an example, a 128GB SSD will contain only four flash memory dies, and as I wrote about back in 2014, such an SSD would likely see HDD-level sequential write speeds of 160MB/sec. Other SSD manufacturers already recognize this issue and are taking steps to correct it. At Storage Visions 2016, Samsung briefed me on the upcoming SSD 750 Series that will use planar 16nm NAND to produce 120GB and 250GB capacities. The smaller die capacities of these models will enable respectable write performance and will also enable them to discontinue their 120GB 850 EVO as they transition that line to higher capacity 48-layer VNAND. Getting back to this Micron announcement, we have some new info that bears analysis, and that pertains to the now announced page and block size:

  • 256Gb MLC: 16KB Page / 16MB Block / 1024 Pages per Block

  • 384Gb TLC: 16KB Page / 24MB Block / 1536 Pages per Block

To understand what these numbers mean, using the MLC line above, imagine a 16MB CD-RW (Block) that can write 1024 individual 16KB 'sessions' (Page). Each 16KB can be added individually over time, and just like how files on a CD-RW could be modified by writing a new copy in the remaining space, flash can do so by writing a new Page and ignoring the out of date copy. Where the rub comes in is when that CD-RW (Block) is completely full. The process at this point is very similar actually, in that the Block must be completely emptied before the erase command (which wipes the entire Block) is issued. The data has to go somewhere, which typically means writing to empty blocks elsewhere on the SSD (and in worst case scenarios, those too may need clearing before that is possible), and this moving and erasing takes time for the die to accomplish. Just like how wiping a CD-RW took a much longer than writing a single file to it, erasing a Block takes typically 3-4x as much time as it does to program a page.

With that explained, of significance here are the growing page and block sizes in this higher capacity flash. Modern OS file systems have a minimum bulk access size of 4KB, and Windows versions since Vista align their partitions by rounding up to the next 2MB increment from the start of the disk. These changes are what enabled HDDs to transition to Advanced Format, which made data storage more efficient by bringing the increment up from the 512 Byte sector up to 4KB. While most storage devices still use 512B addressing, it is assumed that 4KB should be the minimum random access seen most of the time. Wrapping this all together, the Page size (minimum read or write) is 16KB for this new flash, and that is 4x the accepted 4KB minimum OS transfer size. This means that power users heavy on their page file, or running VMs, or any other random-write-heavy operations being performed over time will have a more amplified effect of wear of this flash. That additional shuffling of data that must take place for each 4KB write translates to lower host random write speeds when compared to lower capacity flash that has smaller Page sizes closer to that 4KB figure.

schiltron-IMFT-edit.jpg

A rendition of 3D IMFT Floating Gate flash, with inset pulling back some of the tunnel oxide layer to show the location of the floating gate. Pic courtesy Schiltron.

Fortunately for Micron, their choice to carry Floating Gate technology into their 3D flash has netted them some impressive endurance benefits over competing Charge Trap Flash. One such benefit is a claimed 30,000 P/E (Program / Erase) cycle endurance rating. Planar NAND had dropped to the 3,000 range at its lowest shrinks, mainly because there was such a small channel which could only store so few electrons, amplifying the (negative) effects of electron leakage. Even back in the 50nm days, MLC ran at ~10,000 cycle endurance, so 30,000 is no small feat here. The key is that by using that same Floating Gate tech so good at controlling leakage for planar NAND on a new 3D channel that can store way more electrons enables excellent endurance that may actually exceed Samsung's Charge Trap Flash equipped 3D VNAND. This should effectively negate the endurance hit on the larger Page sizes discussed above, but the potential small random write performance hit still stands, with a possible remedy being to crank up the Over-Provisioning of SSDs (AKA throwing flash at the problem). Higher OP means less active pages per block and a reduction in the data shuffling forced by smaller writes.

25nm+penny.jpg

A 25nm flash memory die. Note the support logic (CMOS) along the upper left edge.

One final thing helping out Micron here is that their Floating Gate design also enables a shift of 75% of the CMOS circuitry to a layer *underneath* the flash storage array. This logic is typically part of what you see 'off to the side' of a flash memory die. Layering CMOS logic in such a way is likely thanks to Intel's partnership and CPU development knowledge. Moving this support circuitry to the bottom layer of the die makes for less area per die dedicated to non-storage, more dies per wafer, and ultimately lower cost per chip/GB.

progression slide.png

Samsung's Charge Trap Flash, shown in both planar and 3D VNAND forms.

One final thing before we go. If we know anything about how the Intel / Micron duo function, it is that once they get that freight train rolling, it leads to relatively rapid advances. In this case, the changeover to 3D has taken them a while to perfect, but once production gains steam, we can expect to see some *big* advances. Since Samsung launched their 3D VNAND their gains have been mostly iterative in nature (24, 32, and most recently 48). I'm not yet at liberty to say how the second generation of IMFT 3D NAND will achieve it, but I can say that it appears the next iteration after this 32-layer 256Gb (MLC) /384Gb (TLC) per die will *double* to 512Gb/768Gb (you are free to do the math on what that means for layer count). Remember back in the day where Intel launched new SSDs at a fraction of the cost/GB of the previous generation? That might just be happening again within the next year or two.

CES 2016: Silicon Motion Updates SM2246EN for 3D NAND, Teases TLC and PCIe

Subject: Storage, Shows and Expos | January 6, 2016 - 11:00 AM |
Tagged: tlc, SM2260, SM2258, SM2256, SM2246EN, slc, SK Hynix, silicon motion, mlc, micron, Intel, imft, CES 2016, CES, 3d nand

Silicon Motion has updated their popular SM2246EN controller to support MLC 3D NAND from IMFT and SK Hynix:

160105-215942.jpg

The SM2246EN acts as a gateway for third parties to make their own SSDs. Adding support for 3D NAND is good news, as it means we will be able to see third party SSDs launch with 3D flash sourced from Intel, Micron, or SK Hynix. Another cool tidbit is the fact that those demo units in the above photo were equipped and operating with actual 3D NAND from Intel, Micron, and SK Hynix. Yes, this is the first time seeing packaged MLC 3D NAND from a company other than Samsung. Here are some close-ups for those who want to read part numbers:

160105-215537.jpg

160105-215554.jpg

160105-215614.jpg

Another question on non-Samsung 3D NAND is how does its performance stack up against planar (2D) NAND? Silicon Motion had a bit of an answer to that question for us:

benches.png

Keep in mind those are results from pre-production firmware, but I was happy to see that my prediction of IMFT 3D NAND speeds being effectively equal to their previous 2D flash was correct.

To knock out some other info overheard at our briefing, Silicon Motion will also be making an SM2258, which will be a TLC 3D NAND variant of the SM2256. In addition, we saw the unreleased SM2260:

160105-215637.jpg

160105-215859.jpg

...which is Silicon Motion's PCIe 3.0 x4 SSD controller. This one is expected to surface towards the middle of 2016, and it is currently in the OEM testing stage.

Lots more storage goodies coming later today, so stay tuned! Full press blast for the updates SM2246EN after the break.

Coverage of CES 2016 is brought to you by Logitech!

PC Perspective's CES 2016 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Breaking: Intel and Micron announce 3D XPoint Technology - 1000x Faster Than NAND

Subject: Storage | July 28, 2015 - 04:41 PM |
Tagged: XPoint, non-volatile RAM, micron, memory, Intel

Everyone that reads SSD reviews knows that NAND Flash memory comes with advantages and disadvantages. The cost is relatively good as compared to RAM, and the data remains even with power removed (non-volatile), but there are penalties in the relatively slow programming (write) speeds. To help solve this, today Intel and Micron jointly launched a new type of memory technology.

XPoint.png

XPoint (spoken 'cross point') is a new class of memory technology with some amazing characteristics. 10x the density (vs. DRAM), 1000x the speed, and most importantly, 1000x the endurance as compared to current NAND Flash technology.

2303661_3D_XPoint_Die.jpg

128Gb XPoint memory dies, currently being made by Intel / Micron, are of a similar capacity to current generation NAND dies. This is impressive for a first generation part, especially since it is physically smaller than a current gen NAND die of the same capacity.

Intel stated that the method used to store the bits is vastly different from what is being used in NAND flash memory today. Intel stated that the 'whole cell' properties change as a bit is being programmed, and that the fundamental physics involved is different, and that it is writable in small amounts (NAND flash must be erased in large blocks). While they did not specifically state it, it looks to be phase change memory (*edit* at the Q&A Intel stated this is not Phase Change). The cost of this technology should end up falling somewhere between the cost of DRAM and NAND Flash.

IMFT.jpg

3D XPoint memory is already being produced at the Intel / Micron Flash Technology plant at Lehi, Utah. We toured this facility a few years ago.

Intel and Micron stated that this technology is coming very soon. 2016 was stated as a launch year, and there was a wafer shown to us on stage:

DSC03273.JPG

You know I'm a sucker for good wafer / die photos. As soon as this session breaks I'll get a better shot!

There will be more analysis to follow on this exciting new technology, but for now I need to run to a Q&A meeting with the engineers who worked on it. Feel free to throw some questions in the comments and I'll answer what I can!

*edit* - here's a die shot:

DSC03304.JPG

Added note - this wafer was manufactured on a 20nm process, and consists of a 2-layer matrix. Future versions should scale with additional layers to achieve higher capacities.

Press blast after the break.

Source: Intel

Something is cooking in San Francisco

Subject: Storage | July 28, 2015 - 03:26 PM |
Tagged: Intel, micron, flash

DSC03253.JPG

...stay tuned!

SATA SSD Roundup

Subject: Storage | July 9, 2015 - 08:37 PM |
Tagged: Samsung, 850 EVO, 850 PRO, M600, micron, Sandisk Extreme Pro, ssd, roundup, sata

[H]ard|OCP has just posted a roundup of four affordable SATA SSDs to show which would be the best one to pick up as the majority of users are not able to afford an NVME PCIe SSD.  The drives are all within $50 above or below $200, with the 850 PRO having the highest cost per gigabyte and the EVO the least.  They test content creation and moving large files as well as synthetic benchmarks to come out with a ranking of the four drives which you can refer to if you will be shopping for storage in the near future.  In comparison they use the G.SKILL Phoenix Blade to show off what the new technology can do, for those that can afford it.

1436212589ZYfSOCTOFl_1_1.jpg

"Despite the performance benefits, PCIe SSDs remain an expensive niche market. That means that most of us are not going to be loading up a high end system with PCIe SSDs. Most of us mere mortals will be using SATA SSDs. We tested some of the best SATA drives with enthusiast-friendly price tags."

Here are some more Storage reviews from around the web:

Storage

 

Source: [H]ard|OCP