MWC 2014: Intel Atom Moorefield and Merrifield officially unveiled

Subject: Processors, Mobile | February 24, 2014 - 01:00 AM |
Tagged: z3480, PowerVR, MWC 14, MWC, moorefield, merrifield, Intel, atom

Intel also announced an LTE-Advanced modem, the XMM 7260 at Mobile World Congress today.

Last May Intel shared with us details of its new Silvermont architecture, a complete revamp of the Atom brand with an out-of-order design and vastly improved performance per watt.  In September we had our first real-hands on with a processor built around Silvermont, code named Bay Trail.  The Atom Z37xx and Z36xx products were released and quickly found their way into products like the ASUS T100 convertible notebook.  In fact, both the Bay Trail processor and the ASUS T100 took home honors in our end-of-year hardware recognitions.  

Today at Mobile World Congress 2014, Intel is officially announcing the Atom Z35xx and Z34xx processors based on the same Silvermont architecture, code named Moorefield and Merrifield respectively.  These new processors share the same power efficiency of Bay Trail and excellent performance but have a few changes to showcase.

lte02.jpg

Though there are many SKUs yet to be revealed for Merrifield and Moorefield, this comparison table gives you a quick idea of how the new Atom Z3480 compares to the previous generation, Atom Z2580 and Clover Trail+.  

soc02.jpg

The Atom Z3480 is a dual core (single module) processor with a clock speed as high as 2.13 GHz.  And even though it doesn't have HyperThreading support, the new architecture is definitely faster than the previous product.  The cellular radio listed on this table is a separate chip, not integrated into the SoC - at least not yet.  PowerVR G6400 quad core/cluster graphics should present performance somewhere near that of the iPhone 5s with support for OpenCL and RenderScript acceleration.  Intel claims that this PowerVR architecture will give Merrifield a 2x performance advantages over the graphics system in Clover Trail+.  A new image processor allows for 1080p60 video capture (vs 30 FPS before) and support Android 4.4.2 is ready.  

soc01.jpg

Most interestingly, the Merrifield and Moorefield SoCs do not use Intel's HD graphics technology and instead return to the world of Imagination Technology and the PowerVR IP.  Specifically, the Merrifield chip, the smaller of the two new offerings from Intel, is using the PowerVR G6400 GPU; the same base technology that powers the A7 SoC from Apple in the iPhone 5s.  

soc08.jpg

A comparison between the Merrifield and Moorefield SoCs reveals the differences between what will likely be targeted smartphone and tablet processors.  The Moorefield part uses a pair of modules with a total of four cores, double that of Merrifield, and also includes a slightly higher performance PowerVR GPU option, the G6430.  

Intel has provided some performance results of the new Atom Z3480 using a reference phone, though of course, with all vendor provided benchmarks, take them as an estimate until some third parties get a hold of this hardware for independent testing.  

soc06.jpg

Looking at GFXBench 2.7, Intel estimates that Merrifield will run faster than the Apple A7 in the iPhone 5s and just slightly behind the Qualcomm Snapdragon 800 found in the Samsung Galaxy S4.  Moorefield, the SoC that adds slightly to GPU performance and doubles the CPU core count, would improve performance to best the Qualcomm result.

soc03.jpg

WebXPRT is a web application benchmark and with it Intel's Atom Z3480 has the edge over both the Apple A7 and the Qualcomm S800.  Intel also states that they can meet these performance claims while also offering better battery life than the Snapdragon S800 as well - interestingly the Apple A7 was left out of those metrics.

soc07.jpg

Finally, Intel did dive into the potential performance improvements that support for 64-bit technology will offer when Android finally implements support.  While Kitkat can run a 64-bit kernel, the user space is not yet supported so benchmarking is a very complicated and limited process.  Intel was able to find instances of 16-34% performance improvements from the move to 64-bit on Merrifield.  We are still some time from 64-bit Android OS versions but Intel claims they will have full support ready when Google makes the transistion.

Both of these SoCs should be showing up in handsets and tablets by Q2.  Intel did have design wins for Clover Trail+ in a couple of larger smartphones but the company has a lot more to prove to really make Silvermont a force in the mobile market.  

Manufacturer: Intel

An new era for computing? Or, just a bit of catching up?

Early Tuesday, at 2am for viewers in eastern North America, Intel performed their Computex 2013 keynote to officially kick off Haswell. Unlike ASUS from the night prior, Intel did not announce a barrage of new products; the purpose is to promote future technologies and the new products of their OEM and ODM partners. In all, there was a pretty wide variety of discussed topics.

intel-computex-01.jpg

Intel carried on with the computational era analogy: the 80's was dominated by mainframes; the 90's were predominantly client-server; and the 2000's brought the internet to the forefront. While true, they did not explicitly mention how each era never actually died but rather just bled through: we still use mainframes, especially with cloud infrastructure; we still use client-server; and just about no-one would argue that the internet has been displaced, despite its struggle against semi-native apps.

Intel believes that we are currently in the two-in-one era, which they probably mean "multiple-in-one" due to devices such as the ASUS Transformer Book Trio. They created a tagline, almost a mantra, illustrating their vision:

"It's a laptop when you need it; it's a tablet when you want it."

But before elaborating, they wanted to discuss their position in the mobile market. They believe they are becoming a major player in the mobile market with key design wins and outperforming some incumbent system on a chips (SoCs). The upcoming Silvermont architecture pines to be fill in the gaps below Haswell, driving smartphones and tablets and stretching upward to include entry-level notebooks and all-in-one PCs. The architecture promises to scale between offering three-fold more performance than its past generation, or a fifth of the power for equivalent performance.

intel-computex-02.jpg

Ryan discussed Silvermont last month, be sure to give his thoughts a browse for more depth.

Also, click to read on after the break for my thoughts on the Intel keynote.

Intel plans a new Atom every year, starting with Silvermont

Subject: General Tech, Processors | May 6, 2013 - 11:34 AM |
Tagged: silvermont, merrifield, Intel, Bay Trail, atom

The news today is all about shrinking the Atom, both in process size and power consumption.  Indeed The Tech Report heard talk of milliwatts and SoC's which shows the change of strategy Intel is having with Atom from small footprint HTPCs to POS and other ultra-low power applications.  Hyperthreading has been dropped and Out of Order processing has been brought in which makes far more sense for the new niche Atom is destined for. 

Make sure to check out Ryan's report here as well.

TR_core-block.png

"Since their debut five years ago, Intel's Atom microprocessors have relied on the same basic CPU core. Next-gen Atoms will be based on the all-new Silvermont core, and we've taken a closer look at its underlying architecture."

Here is some more Tech News from around the web:

Tech Talk

Author:
Subject: Processors, Mobile
Manufacturer: Intel

A much needed architecture shift

It has been almost exactly five years since the release of the first Atom branded processors from Intel, starting with the Atom 230 and 330 based on the Diamondville design.  Built for netbooks and nettops at the time, the Atom chips were a reaction to a unique market that the company had not planned for.  While the early Atoms were great sellers, they were universally criticized by the media for slow performance and sub-par user experiences. 

Atom has seen numerous refreshes since 2008, but they were all modifications of the simplistic, in-order architecture that was launched initially.  With today's official release of the Silvermont architecture, the Atom processors see their first complete redesign from the ground up.  With the focus on tablets and phones rather than netbooks, can Intel finally find a foothold in the growing markets dominated by ARM partners? 

I should note that even though we are seeing the architectural reveal today, Intel doesn't plan on having shipping parts until late in 2013 for embedded, server and tablets and not until 2014 for smartphones.  Why the early reveal on the design then?  I think that pressure from ARM's designs (Krait, Exynos) as well as the upcoming release of AMD's own Kabini is forcing Intel's hand a bit.  Certainly they don't want to be perceived as having fallen behind and getting news about the potential benefits of their own x86 option out in the public will help.

silvermont26.jpg

Silvermont will be the first Atom processor built on the 22nm process, leaving the 32nm designs of Saltwell behind it.  This also marks the beginning of a new change in the Atom design process, to adopt the tick/tock model we have seen on Intel's consumer desktop and notebook parts.  At the next node drop of 14nm, we'll see see an annual cadence that first focuses on the node change, then an architecture change at the same node. 

By keeping Atom on the same process technology as Core (Ivy Bridge, Haswell, etc), Intel can put more of a focus on the power capabilities of their manufacturing.

Continue reading about the new Intel Silvermont architecture for tablets and phones!!