Existing Corsair Water Coolers Support (At Least) Skylake

Subject: Cases and Cooling, Memory | August 3, 2015 - 08:10 PM |
Tagged: corsair, dd4, ddr3l, memory, PSU, hydro, h100, H100i GTX, H110, H110i GTX

Skylake is coming up, with rumors pointing to a release at Gamescom in Germany, which is August 5th through August 9th. Beyond seeing the retail packaging, we are beginning to see to companies open up about how their products relate to the new architecture and chipset.

Corsair put up a blog post a few days ago to explain how their memory, water coolers, and power supplies interact with Skylake and Z170. On the PSU side, nothing has changed since Haswell. In terms for memory, DDR3L is supported with Skylake under certain motherboards, but users should look to DDR4.

None of the above should be new information.


What might be new information, though, is that Skylake supports existing LGA-1150 cooler mounts. This means that the Corsair Hydro series of sealed CPU liquid coolers will support Skylake without modification. This is where Corsair's blog stops but, knowing Intel's typical release structure, this likely means that the story will not change for Kaby Lake or Cannonlake, either. These three architectures are expected to use the same socket, which should mean the cooler is the same too.

So your aftermarket cooler should have quite a bit of legs, even with the stock mounts.

Source: Corsair

Breaking: Intel and Micron announce 3D XPoint Technology - 1000x Faster Than NAND

Subject: Storage | July 28, 2015 - 12:41 PM |
Tagged: XPoint, non-volatile RAM, micron, memory, Intel

Everyone that reads SSD reviews knows that NAND Flash memory comes with advantages and disadvantages. The cost is relatively good as compared to RAM, and the data remains even with power removed (non-volatile), but there are penalties in the relatively slow programming (write) speeds. To help solve this, today Intel and Micron jointly launched a new type of memory technology.


XPoint (spoken 'cross point') is a new class of memory technology with some amazing characteristics. 10x the density (vs. DRAM), 1000x the speed, and most importantly, 1000x the endurance as compared to current NAND Flash technology.


128Gb XPoint memory dies, currently being made by Intel / Micron, are of a similar capacity to current generation NAND dies. This is impressive for a first generation part, especially since it is physically smaller than a current gen NAND die of the same capacity.

Intel stated that the method used to store the bits is vastly different from what is being used in NAND flash memory today. Intel stated that the 'whole cell' properties change as a bit is being programmed, and that the fundamental physics involved is different, and that it is writable in small amounts (NAND flash must be erased in large blocks). While they did not specifically state it, it looks to be phase change memory (*edit* at the Q&A Intel stated this is not Phase Change). The cost of this technology should end up falling somewhere between the cost of DRAM and NAND Flash.


3D XPoint memory is already being produced at the Intel / Micron Flash Technology plant at Lehi, Utah. We toured this facility a few years ago.

Intel and Micron stated that this technology is coming very soon. 2016 was stated as a launch year, and there was a wafer shown to us on stage:


You know I'm a sucker for good wafer / die photos. As soon as this session breaks I'll get a better shot!

There will be more analysis to follow on this exciting new technology, but for now I need to run to a Q&A meeting with the engineers who worked on it. Feel free to throw some questions in the comments and I'll answer what I can!

*edit* - here's a die shot:


Added note - this wafer was manufactured on a 20nm process, and consists of a 2-layer matrix. Future versions should scale with additional layers to achieve higher capacities.

Press blast after the break.

Source: Intel

How about that High Bandwidth Memory

Subject: Graphics Cards | May 19, 2015 - 03:51 PM |
Tagged: memory, high bandwidth memory, hbm, Fiji, amd

Ryan and the rest of the crew here at PC Perspective are excited about AMD's new memory architecture and the fact that they will be first to market with it.  However as any intelligent reader is wont to look for; a second opinion on the topic is worth finding.  Look no further than The Tech Report who have also been briefed on AMD's new memory architecture.  Read on to see what they learned from Joe Macri and their thoughts on the successor to GDDR5 and HBM2 which is already in the works.


"HBM is the next generation of memory for high-bandwidth applications like graphics, and AMD has helped usher it to market. Read on to find out more about HBM and what we've learned about the memory subsystem in AMD's next high-end GPU, code-named Fiji."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Manufacturer: AMD

High Bandwidth Memory

UPDATE: I have embedded an excerpt from our PC Perspective Podcast that discusses the HBM technology that you might want to check out in addition to the story below.

The chances are good that if you have been reading PC Perspective or almost any other website that focuses on GPU technologies for the past year, you have read the acronym HBM. You might have even seen its full name: high bandwidth memory. HBM is a new technology that aims to turn the ability for a processor (GPU, CPU, APU, etc.) to access memory upside down, almost literally. AMD has already publicly stated that its next generation flagship Radeon GPU will use HBM as part of its design, but it wasn’t until today that we could talk about what HBM actually offers to a high performance processor like Fiji. At its core HBM drastically changes how the memory interface works, how much power is required for it and what metrics we will use to compare competing memory architectures. AMD and its partners started working on HBM with the industry more than 7 years ago, and with the first retail product nearly ready to ship, it’s time to learn about HBM.

We got some time with AMD’s Joe Macri, Corporate Vice President and Product CTO, to talk about AMD’s move to HBM and how it will shift the direction of AMD products going forward.

The first step in understanding HBM is to understand why it’s needed in the first place. Current GPUs, including the AMD Radeon R9 290X and the NVIDIA GeForce GTX 980, utilize a memory technology known as GDDR5. This architecture has scaled well over the past several GPU generations but we are starting to enter the world of diminishing returns. Balancing memory performance and power consumption is always a tough battle; just ask ARM about it. On the desktop component side we have much larger power envelopes to work inside but the power curve that GDDR5 is on will soon hit a wall, if you plot it far enough into the future. The result will be either drastically higher power consuming graphics cards or stalling performance improvements of the graphics market – something we have not really seen in its history.


While it’s clearly possible that current and maybe even next generation GPU designs could still have depended on GDDR5 as the memory interface, the move to a different solution is needed for the future; AMD is just making the jump earlier than the rest of the industry.

Continue reading our look at high bandwidth memory (HBM) architecture!!

IDF 2014: Through Silicon Via - Connecting memory dies without wires

Subject: Storage, Shows and Expos | September 10, 2014 - 03:34 PM |
Tagged: TSV, Through Silicon Via, memory, idf 2014, idf

If you're a general computer user, you might have never heard the term "Through Silicon Via". If you geek out on photos of chip dies and wafers, and how chips are assembled and packaged, you might have heard about it. Regardless of your current knowledge of TSV, it's about to be a thing that impacts all of you in the near future.

Let's go into a bit of background first. We're going to talk about how chips are packaged. Micron has an excellent video on the process here:

The part we are going to focus on appears at 1:31 in the above video:

die wiring.png

This is how chip dies are currently connected to the outside world. The dies are stacked (four high in the above pic) and a machine has to individually wire them to a substrate, which in turn communicates with the rest of the system. As you might imagine, things get more complex with this process as you stack more and more dies on top of each other:

chip stacking.png

16 layer die stack, pic courtesy NovaChips

...so we have these microchips with extremely small features, but to connect them we are limited to a relatively bulky process (called package-on-package). Stacking these flat planes of storage is a tricky thing to do, and one would naturally want to limit how many of those wires you need to connect. The catch is that those wires also equate to available throughput from the device (i.e. one wire per bit of a data bus). So, just how can we improve this method and increase data bus widths, throughput, etc?

Before I answer that, let me lead up to it by showing how flash memory has just taken a leap in performance. Samsung has recently made the jump to VNAND:

vnand crop--.png

By stacking flash memory cells vertically within a die, Samsung was able to make many advances in flash memory, simply because they had more room within each die. Because of the complexity of the process, they also had to revert back to an older (larger) feature size. That compromise meant that the capacity of each die is similar to current 2D NAND tech, but the bonus is speed, longevity, and power reduction advantages by using this new process.

I showed you the VNAND example because it bears a striking resemblance to what is now happening in the area of die stacking and packaging. Imagine if you could stack dies by punching holes straight through them and making the connections directly through the bottom of each die. As it turns out, that's actually a thing:

tsv cross section.png

Read on for more info about TSV!

DDR3 Overclocking World Record: 2.31 GHz

Subject: General Tech, Motherboards, Memory | July 6, 2014 - 03:53 AM |
Tagged: overclocking, memory, gigabyte

About a week ago, HWBOT posted a video of a new DDR3 memory clock record which was apparently beaten the very next day after the movie was published. Tom's Hardware reported on the first of the two, allegedly performed by Gigabyte on their Z97X-SOC Force LN2 Motherboard. The Tom's Hardware article also, erroneously, lists the 2nd place overclock (then 1st place) at 4.56 GHz when it was really half that, because DDR is duplex (2.28 GHz). This team posted their video with a recording of the overclock being measured by an oscilloscope. This asserts that they did not mess with HWBOT.

The now first place team, which managed 2.31 GHz on the same motherboard, did not go to the same level of proof, as far as I can tell.

This is the 2nd fastest overclock...

... but the fastest to be recorded with an oscilloscope that I can tell

Before the machine crashes to a blue screen, the oscilloscope actually reports 2.29 GHz. I am not sure why they took 10 MHZ off, but I expect it is because the system crashed before HWBOT was able to record that higher frequency. Either way, 2.28 GHz was a new world record, and verified by a video, whether or not it was immediately beat.

Tom's Hardware also claims that liquid nitrogen was used to cool the system, which brings sense to why they would use an LN2 board. It could have been chosen just for its overclocking features, but that would have been a weird tradeoff. The LN2 board doesn't have mounting points for a CPU air or water cooler. The extra features would have been offset by the need to build a custom CPU cooler, to not use liquid nitrogen with. It is also unclear how the memory was cooled, whether it was, somehow, liquid nitrogen-cooled too, or if it was exposed to the air.

Source: HWBOT

Computex 2014: ADATA Announces 2TB SandForce SF3700 Series PCIe and M.2 SSDs, DDR4 Memory

Subject: Memory, Storage | June 4, 2014 - 11:15 AM |
Tagged: ssd, solid state drive, pcie, pci-e ssd, memory, M.2, ddr4, computex 2014, computex, adata, 2tb ssd

ADATA has been showing off some upcoming products at Computex, and it's all about DRAM.


We'll begin with an upcoming line of PCIe Enterprise/Server SSDs powered by the SandForce SF3700-series controller. We've been waiting for products with the SF3700 controller since January, when ADATA showed a prototype board at CES, and ADATA is now showcasing the controller in the "SR1020" series drives.


The first is a 2TB 2.5" drive, but the interface was not announced (and the sample on the floor appeared to be an empty shell).  The listed specs are performance up to 1800MB/s and 150K IOPS, with the drive powered by the SF-3739 controller.  Support for both AHCI and NVMe is also listed, along with the usual TRIM, NCQ, and SMART support.


Another 2TB SSD was shown with exactly the same specs as the 2.5" version, but this one is built on the M.2 spec. The drive will connect via 4 lanes of Gen 2 PCI Express. Both drives in ADATA's SR1020 PCIe SSD lineup will be available in capacities from 240GB - 2TB, and retail pricing and availability is forthcoming.


Continuing the DRAM theme, ADATA also showed new DDR4 modules in commodity and enthusiast flavors. Both of the registered DIMMs on display (an ultra-low profile DIMM was also shown) had standard DDR4 specs of 2133MHz at 1.2V, but ADATA also showed some performance DDR4 at their booth.


A pair of XPG Z1 DDR4 modules in action

No pricing or availability just yet on these products.

Source: ADATA
Subject: Memory
Manufacturer: Kingston

Ultra-Speed RAM, APU-Style

In our review of the Kingston HyperX Predator 2666MHz kit, we discovered what those knowledgeable about Intel memory scaling already knew: for most applications, and specifically games, there is no significant advantage to increases in memory speed past the current 1600MHz DDR3 standard.  But this was only half of the story. What about memory scaling with an AMD processor, and specifically an APU? To find out, we put AMD’s top APU, the A10-7850K, to the test!


Ready for some APU memory testing!


AMD has created a compelling option with their APU lineup, and the inclusion of powerful integrated graphics allows for interesting build options with lower power and space requirements, and even make building tiny mini-ITX systems for gaming realistic. It’s this graphical prowess compared to any other onboard solution that creates an interesting value proposition for any gamer looking at a new low-cost build. The newest Kaveri APU’s are getting a lot of attention and they beg the question, is a discrete graphics card really needed for gaming at reasonable settings?

Continue reading our article on using high speed DDR3 memory with AMD APUs!!

CES 2014: Micron makes further advances in DDR4 memory

Subject: Storage, Shows and Expos | January 8, 2014 - 12:57 AM |
Tagged: ram, micron, memory, ddr4, CES 2014, CES

While the Crucial did not have much in the way of new flash memory product launches this year, Micron as a whole has been busily churning out further revisions of DDR4 memory. While our visit last year only revealed a single prototype for us to look at, now we have all of the typical form factors covered:

2014-01-07 13-36-20.JPG

From top down we have enterprise, enthusiast, OEM, and SO-DIMM form factors, all populated with DDR4 parts. All that needs to happen now is for motherboard and portable manufacturers to get on board with the new technology. As with all chicken-and-egg launches, someone needs to take the first plunge, and here we can see Micron has certainly been on the leading edge of things. That enterprise part above is a full 16GB (not bits!) of DDR4 capacity.

Coverage of CES 2014 is brought to you by AMD!

PC Perspective's CES 2014 coverage is sponsored by AMD.

Follow all of our coverage of the show at http://pcper.com/ces!

Source: Micron DRAM

G.Skill Launches 32GB DDR3 3000MHz TridentX Series Memory

Subject: Memory | June 3, 2013 - 05:50 AM |
Tagged: xmp, overclocking, memory, haswell, G.Skill Trident X, G.Skill, ddr3 3000, ddr3

G.Skill is a company known for its DDR3 memory products and overclocking contests. It recently unveiled a new 32GB DDR3 RAM kit under its TridentX series that is clocked at an impressive 3,000 MHz!

The new G.Skill DDR3 3000MHz 32GB (4 x 8GB) memory kit is aimed at enthusiasts running Intel Haswell processors on Z87 motherboards. It features CAS12 latencies and can be run at 1.65V. It also supports Intel's XMP (Extreme Memory Profiles) standard, which will allow the motherboard to automatically configure the RAM for the full 3000 MHz clockspeed, though it requires a slight CPU overclock as well.

GSkill TridentX DDR3 3000MHz 32GB CAS12 1_65V.jpg

In G.Skill's own benchmark tests, the company managed to run its new 32GB TridentX memory at 3,000 MHz with CAS latencies of 12-14-14-35-CR2 at 1.65V. The Memtest Pro benchmark run was done on a system with an Intel Core i7-4770K and an ASUS Maximus VI Extreme Z87 motherboard. The Intel chip was running with a bus speed of 102.32 MHz and a multiplier of 39 for a total 3.99 GHz core clockspeed with all cores under load. Considering the i7-4770K is only rated for a maximum of DDR3-1600 memory, seeing it running DDR3 at 3GHz is impressive!

The new 32GB (4x8GB) TridentX kit is joined by  8GB (2x4GB) and 16GB (4x8GB) kits that are all rated for DDR3-3000 speeds. The kits continue to be covered by G.Skill's lifetime warranty. The company has not announced pricing or availability, but expect to pay a hefty premium for this super-fast RAM. Think upwards of $1,750 considering the existing 32GB DDR3-2933 C12 G.Skill kit is going for $1,700 on Newegg.

Source: G.Skill