Bulldozers at Knights Corner; duelling server chips

Subject: General Tech | November 16, 2011 - 09:36 AM |
Tagged: xeon e5, xeon, servers, opteron, knights ferry, knights corner, interlagos, hp, dell, bulldozer, acer

As you would expect, no sooner does AMD release news on its new line of Bulldozer era Opterons, Intel follows suit with news on their next generation of server chips.  AMD hit the news and the server room first thanks to interest shown by Dell, HP and Acer.   These vendors have based a series of 2U servers on AMD's new chip as well as a family of blade servers.  Dell's Poweredge C6145 was probably the most ambitious, with 4 sockets you can have 128 cores and 1TB of DDR3 in a 2U rack mount server and FusionIO was suggesting the inclusion of their 1.2TB Iodrive Duo card to ensure your storage media can keep up.

Intel also spoke with The Inquirer and other news sites about their new Xeon E5 processor family as well as providing more information about Knights Bridge. Intel has reached out to a different set of clients for the new Xeon, focusing on NVIDIA's latest target market of High Performance Computing (that HPC acronym you see hanging around Fermi).  They tout over 10,000 chips sold, some of which are sitting pretty in the TOP500.  Also on display was their Knights Ferry accelerator board, again targeted for the HPC crowd that NVIDIA has been courting.

So this processor generation we have Intel and NVIDIA fighting it out for HPC customers, while AMD seems to be without major competition in high density computing, although ARM has certainly been making inroads into that market.  

dell-2u-quad-socket-opteron-185x185.jpg

"AMD's partners have shown a small but impressive array of Bulldozer Opteron kit. Dell's 2U eight socket beast was arguably the most impressive of the lot on show in Munich, but AMD will know it needs more than just one vendor in its fight against Intel. Thankfully it has the might of HP also showing that its traditional rackmount and blade servers can make use of AMD's Bulldozer silicon."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register

IDF 2011: Knights Ferry Shown 8-Deep Running Ray Tracing

Subject: Graphics Cards, Processors, Shows and Expos | September 15, 2011 - 03:17 PM |
Tagged: ray tracing, knights ferry, idf 2011, idf

Very few things impress like a collection of 256 processor cores in a box.  But that is exactly what we saw on our last visit to the floor at the Intel Developer Forum this year when I stopped by to visit friend-of-the-site Daniel Pohl to discuss updates to the ray tracing research he has been doing for many years now.  This is what he showed us:

rt01.jpg

What you see there is a dual-Xeon server running a set of 8 (!!) Knights Ferry many-core processor discrete cards.  Each card holds a chip with 32 Intel Architecture cores running at 1.2 GHz on it and each core can handle 4 threads for a total of 1024 threads in flight at any given time!  Keep in mind these are all modified x86 cores with support for 16-bit wide vector processing so they are pumping through a LOT of FLOPS.  Pohl did note that only 31-32 of the cores are actually doing ray tracing at any given time though as they reserve a couple for scheduling tasks, operating system interaction, etc.

rt02.jpg

Each of the the eight cards in the system is using a pair of 6-pin PCIe power connectors and they are jammed in there pretty tight.  Pohl noted this was the only case they could find that would fit 8 dual-slot add-in cards into it so I'll take a note of that for when I build my own system around them.  Of course there are no display outputs on the Knights Ferry cards as they were never really turned into GPUs in the traditional sense.  They are essentially development and research for exascale computing and HPC workloads for servers though the plan is to bring the power to consumers eventually.

rt03.jpg

To run the demo the Knights Ferry ray tracing server was communicating over a Gigabit Ethernet connection to this workstation that was running game processing, interaction processing and more and passed off data about the movements of the camera and objects in the ray traced world to the server.  The eight Knights Ferry cards then render the frame, the Xeon CPUs compress the image (8:1 using a standard Direct 3D format) and send the data across the network.  All of this happens in real time with basically no latency issues when compared to direct PC gaming. 

rt04.jpg

While the ray tracing game engine projects might seem a little less exciting since the demise of Larrabee, Pohl and his team have been spending a lot of time on learning how to take advantage of the x86 cores available.  The Wolfenstein demo we have seen in past events has been improved to add things like HDR lighting, anti-aliasing and more.

rt05.jpg

Though these features have obviously been around in rasterization based solutions for quite a long time, the demo was meant to showcase the fact that ray tracing doesn't inherently have difficulty performing those kinds of tasks as long as the processing power is there and alotted to it. 

rt06.jpg

I am glad to see the ray tracing research continuing at Intel as I think that in the long-term future, that is the route that gaming and other graphics-based applications will be rendering.  And I am not alone - id Software founder and Doom/Quake creator John Carmack agreed in a recent interview we held with him

Source: PCPer

IDF 2011: Intel Many Integrated Core (MIC) Knights Corner

Subject: Processors, Shows and Expos | September 15, 2011 - 10:54 AM |
Tagged: idf, idf 2011, knights ferry, knights corner, mic, terascale

During Justin Rattner's closing keynote at the Intel Developer Forum he discussed the pending changes to the Many Integrated Core Architectures (MIC) that we previously knew as the Terascale projects.  While we have heard about the Knights Ferry component for some time, and it was basically used a software development platform for Intel's many-core initiative. 

02.jpg

Impressive to see at this stage, the upcoming Knights Corner product will actually be built on the new 22nm tri-gate transistors and with more than 50 cores.  They haven't posted more details on what exactly ">50" refers to but it does mean that Intel continues to progress down this path and is going to be pushing the terascale computing projects into the future. 

Rattner also indicated that not all of the cores on the many-core projects have to be identical and we will soon see designs that combine more than the x86 processors to make for truly heterogeneous computing platforms. 

03.jpg

Research into the program continues including things like stacked and shared memory, new communications protocols like optical interconnects, etc.  We are just as eager to see the fruits of this research as we were for its application to gaming and graphics that eventually failed.

Source: PCPer