Podcast #251 - iBuyPower Revolt, Seagate SSHD, NVIDIA Shield Pricing, and more!

Subject: General Tech | May 16, 2013 - 03:11 PM |
Tagged: podcast, video, ibuypower, revolt, Seagate, sshd, nvidia, project shield, shield, haswell, corsair, seasonic, amd, ASUS P5A

PC Perspective Podcast #251 - 05/16/2013

Join us this week as we discuss the iBuyPower Revolt, Seagate SSHD, NVIDIA Shield Pricing, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Allyn Malventano, and Morry Teitelman

Program length: 1:12:25

  1. Week in Review:
  2. News items of interest:
    1. 0:35:00 Power supplies and Haswell
    2. 0:47:00 Curved Lian-Li case - Love it or hate it?
  3. 1:01:00 Hardware/Software Picks of the Week:
    1. Ryan: Are you still there...?
  4. 1-888-38-PCPER or podcast@pcper.com
  5. Closing/outro

 

Subject: Motherboards
Manufacturer: ASUS

Introduction

Today, ASUS introduces their Intel Z87-based motherboard lineup with board refreshes across all of their product lines: ASUS (mainstream), Republic of Gamers (ROG), The Ultimate Force (TUF), and Workstation (WS). With the exception of their TUF and ROG board lines, ASUS decided to introduce a new and improved color scheme for their boards - black and gold. The motherboard surfaces are black with gold colored heat sinks. While black and gold may not seem like the best match-up, don't judge the boards until you have seen them first hand - the black and gold go very well together.

ROG Motherboards

03-ROG MAXIMUS VI GENE.jpg

ASUS Maximus VI Gene
Courtesy of ASUS

Their ROG line will include the Maximus VI Extreme, the Maximus VI Formula, the Maximus VI Gene, and the Maximus VI Hero. All ROG boards feature the standard red and black color scheme common to that brand. Additionally, ASUS includes SupremeFX audio standard with all ROG boards and their Sonic Radar on-screen overlay technology. Sonic Radar is an in-game overlay that can be used to accurately pinpoint game-based sound sources. For powering these boards, ASUS includes 60amp-rated blackwing chokes and NexFET MOSFETS with 90% power efficiency operation. Use of these power components was seen to reduce on-board temperatures in the ASUS labs by as much as 5 degrees Celcius.

02-ROG MAXIMUS VI EXTREME.jpg

ASUS Maximus VI Extreme
Courtesy of ASUS

ASUS upped the ante even more with their Maximus VI Extreme board by including the ASUS OC Panel. This panel includes a display and can be mounted in a 5.25" drive bay or used externally for real time voltage and temperature monitoring as well as tweaking of various frequency and voltage BIOS settings. The ASUS OC Panel is supported on all ROG boards and will be available for after-market purchase for the non-Extreme boards.

04-ROG MAXIMUS VI HERO.jpg

ASUS Maximus VI Hero
Courtesy of ASUS

The Maximus VI Hero motherboard is the newest member of the ROG line, branded as a more affordable solution for the gamer. This board is marketed as a head-to-head competitor for MSI's MPOWER board.

Continue reading our preview of the ASUS Z87 motherboard lineup!

Haswell Laptop specs! NEC LaVie L to launch in Japan

Subject: General Tech, Graphics Cards, Processors, Systems, Mobile | May 14, 2013 - 03:54 PM |
Tagged: haswell, nec

While we are not sure when it will be released or whether it will be available for North America, we have found a Haswell laptop. Actually, NEC will release two products in this lineup: a high end 1080p unit and a lower end 1366x768 model. Unfortuantely, the article is in Japanese.

nec_haswell_01.jpg

IPS displays have really wide viewing angles, even top and bottom.

NEC is known for their higher-end monitors; most people equate the Dell Ultrasharp panels with professional photo and video production, but their top end offers are ofter a tier below the best from companies like NEC and Eizo. The laptops we are discussing today both contain touch-enabled IPS panels with apparently double the contrast ratio of what NEC considers standard. While these may or may not be the tip-top NEC offerings, they should at least be putting in decent screens.

Obviously the headliner for us is the introduction of Haswell. While we do not know exactly which product NEC decided to embed, we do know that they are relying upon it for their graphics performance. With the aforementioned higher-end displays, it seems likely that NEC is intending this device for the professional market. A price-tag of 190000 yen (just under $1900 USD) for the lower end and 200000 yen (just under $2000 USD) for the higher end further suggests this is their target demographic.

nec_haswell_02.jpg

Clearly a Japanese model.

The professional market does not exactly have huge requirements for graphics performance, but to explicitly see NEC trust Intel for their GPU performance is an interesting twist. Intel HD 4000 has been nibbling, to say the least, on the discrete GPU marketshare in laptops. I would expect this laptop would contain one of the BGA-based parts, which are soldered onto the motherboard, for the added graphics performance.

As a final note, the higher-end model will also contain a draft 802.11ac antenna. It is expected that network performance could be up to 867 megabits as a result.

Of course I could not get away without publishing the raw specifications:

LL850/MS (Price: 200000 yen):

  • Fourth-generation Intel Core processor with onboard video
  • 8GB DDR3 RAM
  • 1TB HDD w/ 32GB SSD caching
  • BDXL (100-128GB BluRay disc) drive
  • IEEE 802.11ac WiFi adapter, Bluetooth 4.0
  • SDXC, Gigabit Ethernet, HDMI, USB3.0, 2x2W stereo Yamaha speakers
  • 1080p IPS display with touch support
  • Office Home and Business 2013 preinstalled?

LL750/MS (Price: 190000 yen):

  • Fourth-generation Intel Core processor with onboard video
  • 8GB DDR3 RAM
  • 1TB HDD (no SSD cache)
  • (Optical disc support not mentioned)
  • IEEE 802.11a/b/g/n WiFi adapter, Bluetooth 4.0
  • SDXC, Gigabit Ethernet, HDMI, USB3.0, 2x2W stereo Yamaha speakers
  • 1366x768 (IPS?) touch-enabled display

Seasonic Releases Information On Its Haswell-Ready Power Supplies

Subject: General Tech, Cases and Cooling | May 11, 2013 - 09:17 PM |
Tagged: seasonic, haswell, Power Supplies, PSU, 0.05A

Following the announcements from other power supply manufacturers, Seasonic has now released a list of its own power supplies that are compatible with Intel's upcoming Haswell processor. The new Haswell CPUs, set to launch June 3rd, incorporate new C6 and C7 sleep states that draw as little as 0.05A from the 12V PSU rail. Because of the low load, some existing power supplies will have issues with the new sleep states and could result in system instability. In light of that, many manufacturers are validating their existing lineups to determine which ones are compatible.

Seasonic Haswell Ready PSUs.jpg

As of the time of publication, the following power supplies from Seasonic are compatible with Haswell and the new sleep states.

Platinum Series

  • 1200W
  • 1000W
  • 860W
  • 760W

Platinum Fanless Series

  • 520W
  • 460W
  • 400W

X-Series

  • 1250W
  • 1050W
  • 850W
  • 750W
  • 650W

G-Series

  • 650W
  • 550W
  • 450W
  • 360W

M12 II Evo Edition Series

  • 850W
  • 750W

Stay tuned to PC Perspective for more information on PSU and Haswell compatibility.

Corsair has, well, Haswell PSU support chart

Subject: Editorial, General Tech, Cases and Cooling, Processors | May 10, 2013 - 04:23 PM |
Tagged: c6, c7, haswell, PSU, corsair

I cannot do it captain! I don't have the not enough power!

We have been discussing the ultra-low power state of Haswell processors for a little over a week and how it could be detrimental to certain power supplies. Power supply manufacturers never quite expected that you could have as little as a 0.05 Amp (0.6W) draw on the 12V rail without being off. Since then, companies such as Enermax started to list power supplies which have been tested and are compliant with the new power requirements.

PSU Series Model Haswell
Compatibility
Comment
AXi AX1200i Yes 100% Compatible with Haswell CPUs
AX860i Yes 100% Compatible with Haswell CPUs
AX760i Yes 100% Compatible with Haswell CPUs
AX AX1200 Yes 100% Compatible with Haswell CPUs
AX860 Yes 100% Compatible with Haswell CPUs
AX850 Yes 100% Compatible with Haswell CPUs
AX760 Yes 100% Compatible with Haswell CPUs
AX750 Yes 100% Compatible with Haswell CPUs
AX650 Yes 100% Compatible with Haswell CPUs
HX HX1050 Yes 100% Compatible with Haswell CPUs
HX850 Yes 100% Compatible with Haswell CPUs
HX750 Yes 100% Compatible with Haswell CPUs
HX650 Yes 100% Compatible with Haswell CPUs
TX-M TX850M Yes 100% Compatible with Haswell CPUs
TX750M Yes 100% Compatible with Haswell CPUs
TX650M Yes 100% Compatible with Haswell CPUs
TX TX850 Yes 100% Compatible with Haswell CPUs
TX750 Yes 100% Compatible with Haswell CPUs
TX650 Yes 100% Compatible with Haswell CPUs
GS GS800 Yes 100% Compatible with Haswell CPUs
GS700 Yes 100% Compatible with Haswell CPUs
GS600 Yes 100% Compatible with Haswell CPUs
CX-M CX750M Yes 100% Compatible with Haswell CPUs
CX600M TBD Likely compatible — currently validating
CX500M TBD Likely compatible — currently validating
CX430M TBD Likely compatible — currently validating
CX CX750 Yes 100% Compatible with Haswell CPUs
CX600 TBD Likely compatible — currently validating
CX500 TBD Likely compatible — currently validating
CX430 TBD Likely compatible — currently validating
VS VS650 TBD Likely compatible — currently validating
VS550 TBD Likely compatible — currently validating
VS450 TBD Likely compatible — currently validating
VS350 TBD Likely compatible — currently validating

Above is Corsair's slightly incomplete chart as of the time it was copied from their website, 3:30pm on May 10th, 2013; so far it is coming up all good. Their blog should be updated as new products get validated for the new C6 and C7 CPU sleep states.

The best part of this story is just how odd it is given the race to arc-welding (it's not a podcast so you can't Bingo! hahaha!) supplies we have been experiencing over the last several years. Simply put, some companies never thought that component manufacturers such as Intel would race to the bottom of power draws.

Source: Corsair

Podcast #250 - Haswell Iris Graphics, Intel Silvermont, AMD HD 9000 Series Rumors and more!

Subject: General Tech | May 9, 2013 - 11:30 AM |
Tagged: Volcanic Islands, ssd, silvermont, Seagate, podcast, pcper, iris pro, iris, Intel, haswell, gamer memory, amd

PC Perspective Podcast #250 - 05/09/2013

Join us this week as we discuss Haswell Iris Graphics, Intel Silvermont, AMD HD 9000 Series Rumors and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Morry Teitelman

Program length: 1:19:46

  1. Week in Review:
  2. News items of interest:
  3. 1-888-38-PCPER or podcast@pcper.com
  4. Closing/outro

 

Enermax Power Supplies Are Ready For New Haswell CPU Sleep States

Subject: General Tech | May 3, 2013 - 08:59 AM |
Tagged: zero load, PSU, Intel, haswell, enermax, cpu, c6, c5

Earlier this week, it was revealed that Intel’s upcoming Haswell processors would feature new C6 and C7 sleep states that draw as little as 0.05A on the 12V rail. Such low power draw on the 12V rail may cause problems for existing power supplies, which are not accustomed to facilitating such low power draw (especially on the 12V line). In an attempt to clear up a bit of the confusion for its customers, Enermax has put together a list of its mid-range and high-end power supplies that meet the standards required to support the new low-power processor states.

Enermax Platimax 1000W PSU.jpg

According to the press release (seen below), the Enermax power supplies use so-called Zero Load technology that uses a DC to DC converter to support low wattage power draw. This technology has been in Enermax power supplies since the Revolution85+ series which was launched in 2008. The company claims that the power supplies deliver “rock solid voltages” down to 0W load, which is within the Intel specification of 0.05A for the CPU alone.

The list of compatible Enermax power supplies is as follows:

  • Enermax Platimax Series
    • Platimax 500W (EPM500AWT)
    • Platimax 600W (EPM600AWT)
    • Platimax 750W (EPM750AWT)
    • Platimax 850W (EPM850EWT)
    • Platimax 1000W (EPM1000EWT)
    • Platimax 1200W (EPM1200EWT)
    • Platimax 1500W (EPM1500EGT)
  • Enermax Revolution87+ Series
    • Revolution87+ 550W (ERV550AWT-G)
    • Revolution87+ 650W (ERV650AWT-G)
    • Revolution87+ 750W (ERV750AWT-G)
    • Revolution87+ 850W (ERV850EWT-G)
    • Revolution87+ 1000W (ERV1000EWT-G)
  • Enermax MaxRevo Series
    • MaxRevo 1200W (EMR1200EWT)
    • MaxRevo 1350W (EMR1350EWT)
    • MaxRevo 1500W (EMR1500EGT)
  • Enermax Triathlor Series
    • Triathlor 385W (ETA385AWT)
    • Triathlor 450W (ETA450AWT)
    • Triathlor 550W (ETA550AWT)
  • Enermax Revolution85+ Series
    • Revolution85+ 850W (ERV850EWT)
    • Revolution85+ 920W (ERV920EWT)
    • Revolution85+ 950W (ERV950EWT)
    • Revolution85+ 1020W (ERV1020EWT)
    • Revolution85+ 1050W (ERV1050EWT)
    • Revolution85+ 1250W (ERV1250EGT)
  • Enermax Modu87+ Series
    • Modu87+ 500W (EMG500AWT)
    • Modu87+ 600W (EMG600AWT)
    • Modu87+ 700W (EMG700AWT)
    • Modu87+ 800W (EMG800EWT)
    • Modu87+ 900W (EMG900EWT)
  • Enermax Pro87+ Series
    • Pro87+ 500W (EPG500AWT)
    • Pro87+ 600W (EPG600AWT)

The list includes power supplies from a number of series over the past few years that range from 500W to 1250W. I'm sure between now and the launch of Haswell in the first week of June that other PSU manufacturers will be announcing which models are compatible and which are not. Stay tuned to PC Perspective as more information becomes available!

Source: Enermax

Overclocker Pushes An Intel Haswell Core i7-4770K CPU Beyond 7GHz

Subject: Processors | May 3, 2013 - 06:45 AM |
Tagged: z87, overclocking, Intel, haswell, core i7 4770k, 7ghz

OCaholic has spotted an interesting entry in the CPU-Z database. According to the site, an overclocker by the handle of “rtiueuiurei” has allegedly managed to push an engineering sample of Intel’s upcoming Haswell Core i7-4770K processor past 7GHz.

Intel Core i7-4770K Overclocked Beyond 7GHz.jpg

If the CPU-Z entry is accurate, the overclocker used a BCLK speed of 91.01 and a multiplier of 77 to achieve a CPU clockspeed of 7012.65MHz. The chip was overclocked on a Z87 motherboard along with a single 2GB G.Skill DDR3 RAM module. Even more surprising than the 7GHz clockspeed is the voltage that the overclocker used to get there: an astounding 2.56V according to CPU-Z.

From the information Intel provided at IDF Beijing, the new 22nm Haswell processors feature an integrated voltage regulator (IVR), and the CPU portion of the chip’s voltage is controlled by the Vccin value. Intel recommends a range of 1.8V to 2.3V for this value, with a maximum of 3V and a default of 1.8V. Therefore, the CPU-Z-reported number may actually be correct. On the other hand, it may also just be a bug in the software due to the unreleased-nature of the Haswell chip.

Voltage questions aside, the frequency alone makes for an impressive overclock, and it seems that the upcoming chips will have decent overclocking potential!

Source: OCaholic
Author:
Manufacturer: Intel

The Intel HD Graphics are joined by Iris

Intel gets a bad wrap on the graphics front.  Much of it is warranted but a lot of it is really just poor marketing about the technologies and features they implement and improve on.  When AMD or NVIDIA update a driver or fix a bug or bring a new gaming feature to the table, they are sure that every single PC hardware based website knows about and thus, that as many PC gamers as possible know about it.  The same cannot be said about Intel though - they are much more understated when it comes to trumpeting their own horn.  Maybe that's because they are afraid of being called out on some aspects or that they have a little bit of performance envy compared to the discrete options on the market. 

Today might be the start of something new from the company though - a bigger focus on the graphics technology in Intel processors.  More than a month before the official unveiling of the Haswell processors publicly, Intel is opening up about SOME of the changes coming to the Haswell-based graphics products. 

We first learned about the changes to Intel's Haswell graphics architecture way back in September of 2012 at the Intel Developer Forum.  It was revealed then that the GT3 design would essentially double theoretical output over the currently existing GT2 design found in Ivy Bridge.  GT2 will continue to exist (though slightly updated) on Haswell and only some versions of Haswell will actually see updates to the higher-performing GT3 options.  

01.jpg

In 2009 Intel announced a drive to increase graphics performance generation to generation at an exceptional level.  Not long after they released the Sandy Bridge CPU and the most significant performance increase in processor graphics ever.  Ivy Bridge followed after with a nice increase in graphics capability but not nearly as dramatic as the SNB jump.  Now, according to this graphic, the graphics capability of Haswell will be as much as 75x better than the chipset-based graphics from 2006.  The real question is what variants of Haswell will have that performance level...

02.jpg

I should note right away that even though we are showing you general performance data on graphics, we still don't have all the details on what SKUs will have what features on the mobile and desktop lineups.  Intel appears to be trying to give us as much information as possible without really giving us any information. 

Read more on Haswell's new graphics core here.

Possible power supply issues for Intel Haswell CPUs

Subject: Cases and Cooling, Processors | May 1, 2013 - 03:07 PM |
Tagged: power supply, Intel, idle, haswell, c7, c6

I came across an interesting news story posted by The Tech Report this morning that dives into the possibility of problems with Intel's upcoming Haswell processors and currently available power supplies.  Apparently, the new C6 and C7 idle power states that give the new Haswell architecture benefits for low power scenarios place a requirement of receiving a 0.05 amps load on the 12V2 rail.  (That's just 50 milliamps!)  Without that capability, the system can exhibit unstable behavior and a quick look at the power supply selector on Intel's own website is only listing a couple dozen that support the feature. 

haswellpsu.jpg

This table from VR-Zone, the source of the information initially, shows the difference between the requirements for 3rd (Ivy Bridge) and 4th generation (Haswell) processors.  The shift is an order of magnitude and is quite a dramatic change for PSU vendors.  Users of Corsair power supplies will be glad to know that among those listed with support on the Intel website linked above were mostly Corsair units!

A potential side effect of this problem might be that motherboard vendors simply disable those sleep states by default.  I don't imagine that will be a problem for PC builders anyway since most desktop users aren't really worried about the extremely small differences in power consumption they offer.  For mobile users and upcoming Haswell notebook designs the increase in battery life is crucial though and Intel has surely been monitoring those power supplies closely. 

I asked our in-house power supply guru, Lee Garbutt, who is responsible for all of the awesome power supply reviews on pcper.com, what he thought about this issue.  He thinks the reason more power supplies don't support it already is for power efficiency concerns:

Most all PSUs have traditionally required "some load" on the various outputs to attain good voltage regulation and/or not shut down. Not very many PSUs are designed yet to operate with no load, especially on the critical +12V output. One of the reasons for this is efficiency. Its harder to design a PSU to operate correctly with a very low load AND to deliver high efficiency. It would be easy just to add some bleed resistance across the DC outputs to always have a minimal load to keep voltage regulation under control but then that lowers efficiency.

Source: Tech Report