Falcon Northwest Tiki-Z Special Edition Crams Titan Z And Liquid Cooled i7-4790K CPU Into A Stylish Micro Tower

Subject: General Tech, Systems | August 16, 2014 - 01:40 AM |
Tagged: titan z, tiki-z, gtx titan z, gk110, falcon northwest, dual gpu

The Tiki-Z Special Edition is the latest custom PC from boutique vendor Falcon Northwest. This high-end enthusiast system, which starts at $5,614 manages to pack a dual GPU graphics card, liquid cooled CPU, 600W power supply, and up to 6TB of storage into a stylish micro tower that measures a mere 4” wide and 13” tall.

Falcon Northwest has taken the original Tiki chassis and made several notable tweaks to accommodate NVIDIA’s latest dual GPU card: the GeForce GTX TITAN Z which we reviewed here. The case has a custom (partial) side window that shows off the graphics card. This window can be green glass or smoke tinted acrylic with customizable laser cut venting. A ducted intake feeds cool air to the graphics card and vents at the rear and front of the case exhaust hot air. The exterior of the case can be painted in any single color of automobile paint for free or with a fully customized paint scheme with artwork at an additional cost.

Falcon Northwest Tiki-Z Micro Tower.jpg

In addition to the Titan Z with its 5,760 CUDA cores, 12GB of memory, and 8.1 TFLOPS of peak compute power, Falcon Northwest has packed a modular small form factor 600W PSU from SilverStone, an ASUS Z97I Plus motherboard, Intel Core i7-4790K “Devil’s Canyon” CPU with liquid cooler, up to 16GB of DDR3 1866MHz memory from G.Skill, and up to 6TB of storage (two 1TB SSDs and one 4TB Western Digital Green hard drive). The i7-4970K comes stock clocked at 4GHz (4.4GHz max turbo), but can be overclocked by Falcon Northwest upon request.

Needless to say, that is a lot of hardware to cram into a PC that can easily sit next to your monitor at your desk or in your living room!

The engineering, artwork, and support of this high end system all come at a price, however. The new Titan Z powered boutique PC starts at $5,614 USD and is available now from Falcon Northwest. To sweeten the deal, for a limited time Falcon Northwest is including a free ASUS PB287Q 4K monitor (3820x2160, 60Hz, 1ms response time, see more specification in our review) with each Tiki-Z purchase.

This system is an impressive feat of engineering and it certainly looks sharp with the artwork, custom side panel, and compact form factor. My only concern from a usability standpoint would be noise from the cooling systems for the GPU, CPU radiator, and PSU. One also has to consider that the Titan Z graphics card by itself is priced at $3,000 which puts the Tiki Z pricing back into the somewhat sane world of boutique PC pricing (heh at about $2,600 for the system minus the GPU). No question, this is not going to be a system for everyone and will even be a niche product within the niche market of those enthusiasts interested in pre-built gaming systems. Even so, if noise levels can be held in check it will make for one powerful little gaming box!

GeForce GTX Titan Z Overclocking Testing

Subject: Graphics Cards | June 12, 2014 - 06:17 PM |
Tagged: overclocking, nvidia, gtx titan z, geforce

Earlier this week I posted a review of the NVIDIA GeForce GTX Titan Z graphics card, a dual-GPU Kepler GK110 part that currently sells for $3000. If you missed that article you should read it first and catch up but the basic summary was that, for PC gamers, it's slower and twice the price of AMD's Radeon R9 295X2.

During that article though I mentioned that the Titan Z had more variable clock speeds than any other GeForce card I had tested. At the time I didn't go any further than that since the performance of the card already pointed out the deficit it had going up against the R9 295X2. However, several readers asked me to dive into overclocking with the Titan Z and with that came the need to show clock speed changes. 

My overclocking was done through EVGA's PrecisionX software and we measured clock speeds with GPU-Z. The first step in overclocking an NVIDIA GPU is to simply move up the Power Target sliders and see what happens. This tells the card that it is allowed to consume more power than it would normally be allowed to, and then thanks to GPU Boost technology, the clock speed should scale up naturally. 

titanzoc.jpg

Click to Enlarge

And that is exactly what happened. I ran through 30 minutes of looped testing with Metro: Last Light at stock settings, with the Power Target at 112%, with the Power Target at 120% (the maximum setting) and then again with the Power Target at 120% and the GPU clock offset set to +75 MHz. 

That 75 MHz offset was the highest setting we could get to run stable on the Titan Z, which brings the Base clock up to 781 MHz and the Boost clock to 951 MHz. Though, as you'll see in our frequency graphs below the card was still reaching well above that.

clockspeedtitanz.png

Click to Enlarge

This graph shows clock rates of the GK110 GPUs on the Titan Z over the course of 25 minutes of looped Metro: Last Light gaming. The green line is the stock performance of the card without any changes to the power settings or clock speeds. While it starts out well enough, hitting clock rates of around 1000 MHz, it quickly dives and by 300 seconds of gaming we are often going at or under the 800 MHz mark. That pattern is consistent throughout the entire tested time and we have an average clock speed of 894 MHz.

Next up is the blue line, generated by simply moving the power target from 100% to 112%, giving the GPUs a little more thermal headroom to play with. The results are impressive, with a much more consistent clock speed. The yellow line, for the power target at 120%, is even better with a tighter band of clock rates and with a higher average clock. 

Finally, the red line represents the 120% power target with a +75 MHz offset in PrecisionX. There we see a clock speed consistency matching the yellow line but offset up a bit, as we have been taught to expect with NVIDIA's recent GPUs. 

clockspeedtitan-avg.png

Click to Enlarge

The result of all this data comes together in the bar graph here that lists the average clock rates over the entire 25 minute test runs. At stock settings, the Titan Z was able to hit 894 MHz, just over the "typical" boost clock advertised by NVIDIA of 876 MHz. That's good news for NVIDIA! Even though there is a lot more clock speed variance than I would like to see with the Titan Z, the clock speeds are within the expectations set by NVIDIA out the gate.

Bumping up that power target though will help out gamers that do invest in the Titan Z quite a bit. Just going to 112% results in an average clock speed of 993 MHz, a 100 MHz jump worth about 11% overall. When we push that power target up even further, and overclock the frequency offset a bit, we actually get an average clock rate of 1074 MHz, 20% faster than the stock settings. This does mean that our Titan Z is pulling more power and generating more noise (quite a bit more actually) with fan speeds going from around 2000 to 2700 RPM.

MetroLL_2560x1440_OFPS.png

MetroLL_2560x1440_PER.png

MetroLL_3840x2160_OFPS.png

MetroLL_3840x2160_PER.png

At both 2560x1440 and 3840x2160, in the Metro: Last Light benchmark we ran, the added performance of the Titan Z does put it at the same level of the Radeon R9 295X2. Of course, it goes without saying that we could also overclock the 295X2 a bit further to improve ITS performance, but this is an exercise in education.

IMG_0270.JPG

Does it change my stance or recommendation for the Titan Z? Not really; I still think it is overpriced compared to the performance you get from AMD's offerings and from NVIDIA's own lower priced GTX cards. However, it does lead me to believe that the Titan Z could have been fixed and could have offered at least performance on par with the R9 295X2 had NVIDIA been willing to break PCIe power specs and increase noise.

UPDATE (6/13/14): Some of our readers seem to be pretty confused about things so I felt the need to post an update to the main story here. One commenter below mentioned that I was one of "many reviewers that pounded the R290X for the 'throttling issue' on reference coolers" and thinks I am going easy on NVIDIA with this story. However, there is one major difference that he seems to overlook: the NVIDIA results here are well within the rated specs. 

When I published one of our stories looking at clock speed variance of the Hawaii GPU in the form of the R9 290X and R9 290, our results showed that clock speed of these cards were dropping well below the rated clock speed of 1000 MHz. Instead I saw clock speeds that reached as low as 747 MHz and stayed near the 800 MHz mark. The problem with that was in how AMD advertised and sold the cards, using only the phrase "up to 1.0 GHz" in its marketing. I recommended that AMD begin selling the cards with a rated base clock and a typical boost clock instead only labeling with the, at the time, totally incomplete "up to" rating. In fact, here is the exact quote from this story: "AMD needs to define a "base" clock and a "typical" clock that users can expect." Ta da.

The GeForce GTX Titan Z though, as we look at the results above, is rated and advertised with a base clock of 705 MHz and a boost clock of 876 MHz. The clock speed comparison graph at the top of the story shows the green line (the card at stock) never hitting that 705 MHz base clock while averaging 894 MHz. That average is ABOVE the rated boost clock of the card. So even though the GPU is changing between frequencies more often than I would like, the clock speeds are within the bounds set by NVIDIA. That was clearly NOT THE CASE when AMD launched the R9 290X and R9 290. If NVIDIA had sold the Titan Z with only the specification of "up to 1006 MHz" or something like then the same complaint would be made. But it is not.

The card isn't "throttling" at all, in fact, as someone specifies below. That term insinuates that it is going below a rated performance rating. It is acting in accordance with the GPU Boost technology that NVIDIA designed.

Some users seem concerned about temperature: the Titan Z will hit 80-83C in my testing, both stock and overclocked, and simply scales the fan speed to compensate accordingly. Yes, overclocked, the Titan Z gets quite a bit louder but I don't have sound level tests to show that. It's louder than the R9 295X2 for sure but definitely not as loud as the R9 290 in its original, reference state.

Finally, some of you seem concerned that I was restrticted by NVIDIA on what we could test and talk about on the Titan Z. Surprise, surprise, NVIDIA didn't send us this card to test at all! In fact, they were kind of miffed when I did the whole review and didn't get into showing CUDA benchmarks. So, there's that.

Podcast #304 - GeForce GTX TITAN Z, Core i7-4790K, Gigabyte Z97X-SOC Force and more!

Subject: Editorial | June 12, 2014 - 02:28 PM |
Tagged: Z97X-SOC Force, video, titan z, radeon, project tango, podcast, plextor, nvidia, Lightning, gtx titan z, gigabyte, geforce, E3 14, amd, 4790k, 290x

PC Perspective Podcast #304 - 06/12/2014

We have lots of reviews to talk about this week including the GeForce GTX TITAN Z, Core i7-4790K, Gigabyte Z97X-SOC Force, E3 News and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom and Allyn Maleventano

Program length: 1:11:36

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

NVIDIA Titan Z Missed Its Release Date

Subject: General Tech, Graphics Cards | May 12, 2014 - 08:00 PM |
Tagged: titan z, nvidia, gtx titan z, geforce

To a crowd of press and developers at their GTC summit, NVIDIA announced the GeForce GTX Titan Z add-in board (AIB). Each of the two, fully unlocked, GK110 GPUs would each have access to 6GB of GDDR5 memory (12GB total). The card was expected to be available on May 8th but has yet to surface. As NVIDIA has yet to comment on the situation, many question whether it ever will.

nvidia-titan-z-where.png

And then we get what we think are leaked benchmarks (note: two pictures).

One concern about the Titan Z was its rated 8 TeraFLOPs of compute performance. This is a fairly sizable reduction from the theoretical maximum of 10.24 TeraFLOPs of two Titan Black processors and even less than two first-generation Titans (9 TeraFLOPs combined). We expected that this is due to reduced clock rates. What we did not expect is for benchmarks to show the GPUs boost way above those advertised levels, and even beyond the advertised boost clocks of the Titan Black and the 780 Ti. The card was seen pushing 1058 MHz in some sections, which leads to a theoretical compute performance of 12.2 TeraFLOPs (6.1 TeraFLOPs per GPU) in single precision. That is a lot.

These benchmarks also show that NVIDIA has a slight lead over AMD's R9 295X2 in many games, except Battlefield 4 and Sleeping Dogs (plus 3DMark and Unigine). Of course, these benchmarks measure the software reported frame rate and frame times and those may or may not be indicative of actual performance. While I would say that the Titan Z appears to have a slight performance lead over the R9 295X2, although a solid argument for an AMD performance win exists, it does so double the cost (at its expected $3000 USD price point). That is not up for debate.

Whichever card is faster, AMD's is half the price and available for purchase right now.

So, until NVIDIA says anything, the Titan Z is in limbo. I am sure there exists CUDA developers who await its arrival. Personally, I would just get three Titan Blacks since you are going to need to manually schedule your workloads across multiple processors anyway (or 780 Tis if 32-bit arithmetic is enough precision). That is, of course, unless you cannot physically fit enough GeForce Titan Blacks in your motherboard and, as such, you require two GK110 chips per AIB (but not enough to bother writing a cluster scheduling application).

Source: Unknown

GTC 2014: NVIDIA Shows Off New Dual GK110 GPU GTX TITAN Z Graphics Card

Subject: General Tech | March 25, 2014 - 05:46 PM |
Tagged: gtx titan z, gtx titan, GTC 2014, CUDA

During the opening keynote, NVIDIA showed off several pieces of hardware that will be available soon. On the desktop and workstation side of things, researchers (and consumers chasing the ultra high end) have the new GTX Titan Z to look forward to. This new graphics card is a dual GK110 GPU monster that offers up 8 TeraFLOPS of number crunching performance for an equally impressive $2,999 price tag.

DSC01411.JPG

Specifically, the GTX TITAN Z is a triple slot graphics card that marries two full GK110 (big Kepler) GPUs for a total of 5,760 CUDA cores, 448 TMUs, and 96 ROPs with 12GB of GDDR5 memory on a 384-bit bus (6GB on a 384-bit bus per GPU). NVIDIA has yet to release clockspeeds, but the two GPUs will run at the same clocks with a dynamic power balancing feature. Four the truly adventurous, it appears possible to SLI two GTX Titan Z cards using the single SLI connector. Display outputs include two DVI, one HDMI, and one DisplayPort connector.

NVIDIA is cooling the card using a single fan and two vapor chambers. Air is drawn inwards and exhausted out of the front exhaust vents.

DSC01415.JPG

In short, the GTX Titan Z is NVIDIA's new number crunching king and should find its way into servers and workstations running big data analytics and simulations. Personally, I'm looking forward to seeing someone slap two of them into a gaming PC and watching the screen catch on fire (not really).

What do you think about the newest dual GPU flagship?

Stay tuned to PC Perspective for further GTC 2014 coverage!