Author:
Subject: Processors
Manufacturer: AMD

Codename Kyoto

Kabini is a pretty nifty little chip.  So nifty, AMD is actually producing server grade units for the growing micro-server market.  As readers may or may not remember, AMD bought up SeaMicro last year to get a better grip on the expanding micro-server market.  While there are no official announcements from SeaMicro about offerings utilizing the server-Kabini parts, we can expect there to be sooner as opposed to later.

opt_x_01.jpg

The Kabini parts (Jaguar + GCN) will be branded Opteron X-series.  So far there are two announced products; one utilizes the onboard graphics portion while the other has the GCN based unit disabled.  The products have a selectable TDP that ranges from 9 watts to 22 watts.  This should allow the vendors to further tailor the chips to their individual solutions.

The X1150 is the GPU-less product with adjustable TDPs ranging from 9 to 17 watts.  It is a native quad core product with 2 MB of L2 cache.  It can be clocked up to 2 GHz, which we assume is that 17 watts range.  The X2150 has an adjustable TDP range from 11 to 22 watts.  The four cores can go to a max speed of 1.9 GHz while the GPU can go from 266 MHz up to a max 600 MHz.

Click here to read the entire article on the new Opteron X-series!

Author:
Subject: Processors
Manufacturer: AMD

The Architectural Deep Dive

AMD officially unveiled their brand new Bobcat architecture to the world at CES 2011.  This was a very important release for AMD in the low power market.  Even though Netbooks were a dying breed at that time, AMD experienced a good uptick in sales due to the good combination of price, performance, and power consumption for the new Brazos platform.  AMD was of the opinion that a single CPU design would not be able to span the power consumption spectrum of CPUs at the time, and so Bobcat was designed to fill that space which existed from 1 watt to 25 watts.  Bobcat never was able to get down to that 1 watt point, but the Z-60 was a 4.5 watt part with two cores and the full 80 Radeon cores.

jag_01.jpg

The Bobcat architecture was produced on TSMC’s 40 nm process.  AMD eschewed the upcoming 32 nm HKMG/SOI process that was being utilized for the upcoming Llano and Bulldozer parts.  In hindsight, this was a good idea.  Yields took a while to improve on GLOBALFOUNDRIES new process, while the existing 40 nm product from TSMC was running at full speed.  AMD was able to provide the market in fairly short order with good quantities of Bobcat based APUs.  The product more than paid for itself, and while not exactly a runaway success that garnered many points of marketshare from Intel, it helped to provide AMD with some stability in the market.  Furthermore, it provided a very good foundation for AMD when it comes to low power parts that are feature rich and offer competitive performance.

The original Brazos update did not happen, instead AMD introduced Brazos 2.0 which was a more process improvement oriented product which featured slightly higher speeds but remained in the same TDP range.  The uptake of this product was limited, and obviously it was a minor refresh to buoy purchases of the aging product.  Competition was coming from low power Ivy Bridge based chips, as well as AMD’s new Trinity products which could reach TDPs of 17 watts.  Brazos and Brazos 2.0 did find a home in low powered, but full sized notebooks that were very inexpensive.  Even heavily leaning Intel based manufacturers like Toshiba released Brazos based products in the sub-$500 market.  The combination of good CPU performance and above average GPU performance made this a strong product in this particular market.  It was so power efficient, small batteries were typically needed, thereby further lowering the cost.

All things must pass, and Brazos is no exception.  Intel has a slew of 22 nm parts that are encroaching on the sub-15 watt territory, ARM partners have quite a few products that are getting pretty decent in terms of overall performance, and the graphics on all of these parts are seeing some significant upgrades.  The 40 nm based Bobcat products are no longer competitive with what the market has to offer.  So at this time we are finally seeing the first Jaguar based products.  Jaguar is not a revolutionary product, but it improves on nearly every aspect of performance and power usage as compared to Bobcat. 

Continue reading our analysis of the new Jaguar and GCN architecture!!

HIS Launches Factory Overclocked HD 7850 IceQ X^2 Turbo Graphics Card

Subject: General Tech | May 11, 2013 - 08:12 PM |
Tagged: radeon hd 7850, ICEQ Turbo, his, hd 7850, GCN, amd

HIS has launched a new factory overclocked graphics card based on AMD's Radeon HD 7850 "Pitcairn" GPU called the IceQ X^2 Turbo. The new card uses a custom PCB and IceQ X^2 cooler.

HIS HD 7850 IceQ X^2 Turbo.jpg

The IceQ X^2 cooler uses two 75mm fans to cool an aluminum fin stack that is connected to the copper GPU contact plate with copper heatpipes. The HSF is surrounded by a black shroud. HIS claims that its custom cooler runs at a quiet 28dB when the card is idle.

The HIS HD 7850 IceQ X^2 Turbo is a factory overclocked card. HIS has taken a standard HD 7850 GPU with 1024 stream processors and clocked it at 1GHz, which is a 140MHz overclock over the reference 7850 clockspeed. The card is further paired with 2GB of GDDR5 memory clocked at the reference 1200MHz (4800MHz effective) on a 256-bit bus. An 8-phase VRM keeps the overclocked components fed with stable power. It offers up a single DVI, one HDMI, and two mini-DisplayPort video outputs.

HIS HD 7850 IceQ X^2 Turbo GPU.jpg

Because of the custom cooler, it should be possible to push the HD 7850 GPU even higher, although exactly how much higher will depend on the individual card.

The HIS IceQ X^2 Turbo does not have any official pricing information yet, but it should be priced somewhere around $220 since the already-available single fan IceQ X Turbo card is currently priced at approximately $210 at online retailers.

Also read: The AMD Radeon HD 7850 gets frame rated!

Source: HIS

hUMA has come with a weapon to slay the memory latency dragon

Subject: General Tech | April 30, 2013 - 01:23 PM |
Tagged: Steamroller, piledriver, Kaveri, Kabini, hUMA, hsa, GCN, bulldozer, APU, amd

AMD may have united GPU and CPU into the APU but one hurdle had remained until now, the the non-uniformity of memory access between the two processors.  Today we learned about one of the first successful HAS projects called Heterogeneous Uniform Memory Access, aka hUMA, which will appear in the upcoming Kaveri chip family.   The use of this new technology will allow the on-die CPU and GPU to access the same memory pool, both physical and virtual and any data passed between the two processors will remain coherent.  As The Tech Report mentions in their overview hUMA will not provide as much of a benefit to discrete GPUs, while they will be able to share address space the widely differing clock speeds between GDDR5 and DDR3 prevent unification to the level of an APU.

Make sure to read Josh's take as well so you can keep up with him on the Podcast.

huma_02.jpg

"At the Fusion Developer Summit last June, AMD CTO Mark Papermaster teased Kaveri, AMD's next-generation APU due later this year. Among other things, Papermaster revealed that Kaveri will be based on the Steamroller architecture and that it will be the first AMD APU with fully shared memory.

Last week, AMD shed some more light on Kaveri's uniform memory architecture, which now has a snazzy marketing name: heterogeneous uniform memory access, or hUMA for short."

Here is some more Tech News from around the web:

Tech Talk

Author:
Subject: Processors
Manufacturer: AMD

heterogeneous Uniform Memory Access

 

Several years back we first heard AMD’s plans on creating a uniform memory architecture which will allow the CPU to share address spaces with the GPU.  The promise here is to create a very efficient architecture that will provide excellent performance in a mixed environment of serial and parallel programming loads.  When GPU computing came on the scene it was full of great promise.  The idea of a heavily parallel processing unit that will accelerate both integer and floating point workloads could be a potential gold mine in wide variety of applications.  Alas, the promise of the technology did not meet expectations when we have viewed the results so far.  There are many problems with combining serial and parallel workloads between CPUs and GPUs, and a lot of this has to do with very basic programming and the communication of data between two separate memory pools.

huma_01.jpg

CPUs and GPUs do not share common memory pools.  Instead of using pointers in programming to tell each individual unit where data is stored in memory, the current implementation of GPU computing requires the CPU to write the contents of that address to the standalone memory pool of the GPU.  This is time consuming and wastes cycles.  It also increases programming complexity to be able to adjust to such situations.  Typically only very advanced programmers with a lot of expertise in this subject could program effective operations to take these limitations into consideration.  The lack of unified memory between CPU and GPU has hindered the adoption of the technology for a lot of applications which could potentially use the massively parallel processing capabilities of a GPU.

The idea for GPU compute has been around for a long time (comparatively).  I still remember getting very excited about the idea of using a high end video card along with a card like the old GeForce 6600 GT to be a coprocessor which would handle heavy math operations and PhysX.  That particular plan never quite came to fruition, but the idea was planted years before the actual introduction of modern DX9/10/11 hardware.  It seems as if this step with hUMA could actually provide a great amount of impetus to implement a wide range of applications which can actively utilize the GPU portion of an APU.

Click here to continue reading about AMD's hUMA architecture.

Author:
Subject: Processors
Manufacturer: AMD

Jaguar Hits the Embedded Space

 

It has long been known that AMD has simply not had a lot of luck going head to head against Intel in the processor market.  Some years back they worked on differentiating themselves, and in so doing have been able to stay afloat through hard times.  The acquisitions that AMD has made in the past decade are starting to make a difference in the company, especially now that the PC market that they have relied upon for revenue and growth opportunities is suddenly contracting.  This of course puts a cramp in AMD’s style, but with better than expected results in their previous quarter, things are not nearly as dim as some would expect.

Q1 was still pretty harsh for AMD, but they maintained their marketshare in both processors and graphics chips.  One area that looks to get a boost is that of embedded processors.  AMD has offered embedded processors for some time, but with the way the market is heading they look to really ramp up their offerings to fit in a variety of applications and SKUs.  The last generation of G-series processors were based upon the Bobcat/Brazos platform.  This two chip design (APU and media hub) came in a variety of wattages with good performance from both the CPU and GPU portion.  While the setup looked pretty good on paper, it was not widely implemented because of the added complexity of a two chip design plus thermal concerns vs. performance.

soc_arch.jpg

AMD looks to address these problems with one of their first, true SOC designs.  The latest G-series SOC’s are based upon the brand new Jaguar core from AMD.  Jaguar is the successor to the successful Bobcat core which is a low power, dual core processor with integrated DX11/VLIW5 based graphics.  Jaguar improves performance vs. Bobcat in CPU operations between 6% to 13% when clocked identically, but because it is manufactured on a smaller process node it is able to do so without using as much power.  Jaguar can come in both dual core and quad core packages.  The graphics portion is based on the latest GCN architecture.

Read the rest of the AMD G-Series release by clicking here!

XFX Announces Malta Dual-GPU Radeon HD 7990

Subject: Graphics Cards | April 24, 2013 - 10:14 PM |
Tagged: xfx, malta, hd 7990, GCN, dual gpu, amd

Now that AMD’s dual-gpu Malta graphics card is official, cards from Add-In Board (AIB) partners are starting to roll in. One such recently announced card is the XFX Radeon HD 7990 card. The XFX card is based on the reference AMD design, which includes two Radeon HD 7970 GPUs in a Crossfire configuration.

The two GPUs can boost up to 1GHz clock speeds and feature a total of 4096 stream processors, 256 texture units, 64 ROPs, and 8.6 billion transistors. The card also includes 3GB of GDDR5 memory per GPU running off a 384-bit bus. It supports AMD’s Eyefinity technology and offers up one DL-DVI and four mini-DisplayPort video outputs.

XFX Radeon HD 7990.jpg

The XFX HD 7990 uses the reference AMD heatsink as well, which includes a massive aluminum fin stack with five copper heatpipes that run the length of the heasink and directly touch the two 7970 GPUs. Three shrouded fans, in turn, keep the heatsink cool.

The dual-GPU monster is eligible for AMD’s Never Settle bundle which includes eight free games. With purchase of the HD 7990 (from any eligible AIB), you get free key codes for the following games:

  • Bioshock Infinite
  • Crysis 3
  • Deus Ex: Human Revolution
  • Far Cry 3
  • Far Cry 3: Blood Dragon
  • Hitman: Absolution
  • Sleeping Dogs
  • Tomb Raider

The XFX press release further assures gamers that the card can, in fact, play Crysis 3 at maximum settings at a resolution of 3840 x 2160. The company did not mention pricing, however.

For those interested in AMD’s new Malta GPU, check out our review as well as how the card performs when paired with a prototype AMD driver that seeks to address some of the frame rating issues exhibited by AMD's Crossfire multi-GPU solution.

Source: XFX

PowerColor Launches Revised Factory Overclocked Radeon HD 7790 OC V2 Graphics Card

Subject: Graphics Cards | April 13, 2013 - 10:07 PM |
Tagged: radeon hd7790, powercolor, GCN, amd, 7790

PowerColor launched a new factory overclocked graphics card recently that is a revision of a previous model. The PowerColor HD7790 OC V2 is based on AMD’s Graphics Core Next (GCN) architecture and measures a mere 180 x 150 x 38mm.

PowerColor Radeon HD7790 1GB GDDR5 OC V2 Graphics Card.jpg

The AMD Radeon HD 7790 GPU features 896 stream processors, 56 texture units, and 80 ROP units. The GPU is clocked at 1000 MHz base and 1030 MHz boost while the 1GB of GDDR5 memory is clocked at the 6Gbps reference speed. PowerColor has fitted the overclocked card with an aluminum heatsink cooled by a single 8mm copper heatpipe and 70mm fan.

The new card features two DL-DVI, one HDMI, and one DisplayPort video outputs. Its model number is AX7790-1GBD5-DHV2/OC. According to Guru3D, the new/revised card is priced at 120 pounds sterling. However, considering the currently available OC (non-V2) card is $150, the revised card is likely to come in around that price when it hits US retailers.

Also: If you have not already, read our latest Frame Rating article to see how the Radeon HD 7790 graphics card stacks up against the competition!

Source:

AMD Hosting an Event for Fans In San Francisco on April 6th

Subject: General Tech | April 3, 2013 - 05:57 AM |
Tagged: prizes, GCN, fan day, APU, amd

AMD has announced that is will be hosting an event for fans in San Francisco this weekend. The AMD Fan Day is free with registration (register here), and fans will give enthusiasts a chance to go hands-on with the company's 2013 hardware lineup, play several newly released (and some not-yet-released) games, talk with industry experts, check out modded PCs, and have a chance to win free hardware and swag from AMD, Corsair, and Gigabyte.

AMD Fan Day.png

Gamers will get a chance to speak with the developers for Bioshock Infinite, Far Cry 3, Crysis 3, Devil May Cry (DMC), and Tomb Raider as well as AMD representatives. VIZIO, IGN, Ubisoft, Sapphire, and Logitech will also be attending the AMD fan day to show off their latest products.

The event will held at City View at Metreon (address below) at 5:30pm on Saturday, April 6th. Best of all, the first 1,000 registered attendees in the door will get a free AMD A8 5600K APU. The first 120 attendees will win both an A8 5600K APU and an A85X motherboard.

AMD Modded PC.jpg

One of the modded PCs that will be on the event floor.

If you're going to be in the area this weekend and are interested in going, be sure to head over to the AMD site and register. It sounds like it should be a fun time, and the free hardware doesn't hurt!
The AMD Fan Day will be held at the following address:

City View at Metreon
135 4th Street
San Francisco, CA 94013

Will you be checking out the AMD fan day to enjoy some gaming and PC hardware?

Source: AMD

GDC 2013: AMD Reveals Radeon Sky Specifications

Subject: Graphics Cards | March 31, 2013 - 03:06 AM |
Tagged: GDC 13, sky 900, sky 700, sky 500, RapidFire, radeon sky, GCN, cloud gaming, amd

Earlier this week, AMD announced a new series of Radeon-branded cards–called Radeon Sky–aimed at the cloud gaming market. At the time, details on the cards was scarce apart from the fact that the cards would use latency-reduction "secret sauce" tech called RapidFire, and the highest-end model would be the Radeon Sky 900. Thankfully, gamers will not have to wait until AFDS after all, as AMD has posted additional information and specifications to its website. At this point, pricing and the underlying details of RapidFire are the only aspects still unknown.

AMD Radeon Sky Lineup_AMD Slide.jpg

According to the AMD site, the company will release three Radeon Sky cards later this year, called Sky 500, Sky 700, and Sky 900. All three cards are passively cooled with aluminum fin heatsinks and are based on AMD's Graphics Core Next (GCN) architecture. At the high end is the Sky 900, which is a dual Tahiti graphics card clocked at 825 MHz. The Sky 900 features 1,792 stream processors per GPU for a total of 3,584. The card further features 3GB of GDDR5 RAM per GPU on a 384-bit interface for a total GPU bandwidth of 480GB/s. AMD claims this dual slot card draws up to 300W while under load. In many respects the Sky 900 is the Radeon-equivalent to the company's professional FirePro S10,000 graphics card. It has similar hardware specifications (including the 5.91TFLOPS of single precision performance potential), but a higher TDP. It is also $3,599, though whether AMD will price the gaming-oriented Sky 900 similarly is unknown.

The Sky 700 steps down to a single-GPU graphics card. This card features a single Tahiti GPU clocked at 900 MHz with 1792 stream processors and 6GB of GDDR5. The graphics card memory uses a 384-bit memory interface for a total memory bandwidth of 264GB/s. Although also a dual slot card like the Sky 900, the cooler is smaller and it draws only 225W under load.

Finally, the Sky 500 represents the low end of the company's cloud gaming hardware lineup. It is the Radeon Sky equivalent to the company's consumer-grade Radeon HD 7870. The Sky 500 features a single Pitcairn GPU clocked at 950 MHz with 1280 stream processors, 4GB of GDDR5 on a 256-bit memory bus, and a rated 150W power draw under load. It further features 154GB/s of memory bandwidth and is a single slot graphics card.

  Sky 900 Sky 700 Sky 500
GPU(s) Dual Tahiti Single Tahiti Single Pitcairn
GPU Clockspeed 825 MHz 900 MHz 950 MHz
Stream Processors 3584 (1792 per GPU) 1792 1280
Memory 6GB GDDR5 (3GB per GPU) 6GB GDDR5 4GB GDDR5
Memory Bus 384-bit 384-bit 256-bit
Memory Bandwidth 480GB/s 264GB/s 154GB/s
TDP 300W 225W 150W
Card Profile dual-slot dual-slot single-slot

Additionally, the Radeon Sky cards all employ a technology called RapidFire that allegedly reduces latency immensely. As Ryan mentioned on the latest PC Perspective Podcast, the Radeon Sky cards are able to stream up to six games. RapidFire is still a mystery, but the company has indicated that one aspect of RapidFire is the use of AMD's Video Encoding Engine (VCE) to encode the video stream on the GPU itself to reduce game latency. The Sky cards will output at 720p resolutions, and the Sky 700 can support either three games at 60 FPS or six games at 30 FPS.

In addition to working with cloud gaming companies Ubitus, G-Cluster, CiiNow, and Otoy, AMD has announced a partnership with VMWare and Citrix. AMD is reportedly working to allow VMWare ESX/ESXi and Citrix XenServer virtual machines to access the GPU hardware directly, which opens up the possibility of using Sky cards to run workstation applications or remote desktops with 3D support much like NVIDIA's VCA and GRID technology (which the company showed off at GTC last week). Personally, I think the Sky cards may be late to the party but is a step in the right direction. Even if cloud gaming doesn't take off, the cards could still be used to great success by enterprise customers if they are able to allow direct access to the full graphics card hardware from within virtual machines!

More information on the Radeon Sky cards can be found on the AMD website.

Source: AMD