Oh, we like this; Edge will now pause some Flash content

Subject: General Tech | April 8, 2016 - 01:21 PM |
Tagged: flash, microsoft, edge, windows 10

The new insider build of Windows 10 includes a new feature on Edge, similar to the one already found on Chrome, it will pause Flash assets on webpages which are not the main content.  This should mean far less annoying advertisements blaring from your speakers if you happen to visit an uncouth website which features that type of advertisement.  It is also a step in the right direction for security, considering Adobe has posted yet another critical update for a gaping security hole in Flash.  You can follow the links from Slashdot to grab the update if you wish, or delve into the morass of comments about this update.

id429490_1.jpg

"Microsoft Edge will "intelligently auto-pause" Flash content that is "not central to the webpage." If you want to try this out now, you can take the feature for a spin with Windows 10 build 14316, which was recently made available to Windows Insiders"

Here is some more Tech News from around the web:

Tech Talk

Source: Slashdot
Subject: Storage
Manufacturer: Samsung

Introduction

Since Samsung’s August 2015 announcement of their upcoming 48-layer V-NAND, we’ve seen it trickle into recent products like the SSD T3, where it enabled 2TB of capacity in a very small form factor. What we have not yet seen was that same flash introduced in a more common product that we could directly compare against the old. Today we are going to satisfy our (and your) curiosity by comparing a 1TB 850 EVO V1 (32-layer - V2) to a 1TB 850 EVO V2 (48-layer - V3).

**edit**

While Samsung has produced three versions of their V-NAND (the first was 24-layer V1 and only available in one of an enterprise SSDs), there have only been two versions of the 850 EVO. Despite this, Samsung internally labels this new 850 EVO as a 'V3' product as they go by the flash revision in this particular case.

**end edit**

DSC00214.jpg

Samsung’s plan is to enable higher capacities with this new flash (think 4TB 850 EVO and PRO), they also intend to silently push that same flash down into the smaller capacities of those same lines. Samsung’s VP of Marketing assured me that they would not allow performance to drop due to higher per-die capacity, and we can confirm that in part with their decision to drop the 120GB 850 EVO during the switch to 48-layer in favor of a planar 750 EVO which can keep performance up. Smaller capacity SSDs work better with higher numbers of small capacity dies, and since 48-layer VNAND in TLC form comes in at 32GB per die, that would have meant only four 48-layer dies in a 120GB SSD.

48-V-NAND.png

Samsung's 48-Layer V-NAND, dissected by TechInsights
(Similar analysis on 32-Layer V-NAND here)

Other companies have tried silently switching flash memory types on the same product line in the past, and it usually does not go well. Any drops in performance metrics for a product with the same model and spec sheet is never welcome in tech enthusiast circles, but such issues are rarely discovered since companies will typically only sample their products at their initial launch. On the flip side, Samsung appears extremely confident in their mid-line flash substitution as they have voluntarily offered to sample us a 1TB 48-layer 850 EVO for direct comparison to our older 1TB 32-layer 850 EVO. The older EVO we had here had not yet been through our test suite, so we will be comparing these two variations directly against each other starting from the same fresh out of the box and completely unwritten state. Every test will be run on both SSDs in the same exact sequence, and while we are only performing an abbreviated round of testing for these products, the important point is that I will be pulling out our Latency Percentile test for detailed performance evaluation at a few queue depths. Latency Percentile testing has proven itself far more consistent and less prone to data scatter than any other available benchmark, so we’ll be trusting it to give us the true detailed scoop on any performance differences between these two types of flash.

Read on for our comparison of the new and the old!
(I just referred to a 3D Flash part as 'old'. Time flies.)

Transcend to run MLC Flash in SLC Mode for 'SuperMLC' Speed Boost

Subject: Storage | December 30, 2015 - 02:21 PM |
Tagged: transcend, slc, mlc, ssd, flash, SuperMLC

Last year we saw Micron toy with the idea of dynamically flipping flash memory dies between SLC and MLC modes. Ok paper, it sounded like a great idea - get the speed of SLC flash while the SSD is up to 50% full, then start shifting dies over to MLC mode to get the higher capacity. This tech did not exist until the ability to flip dies between modes existed, which was not until shortly before the M600 SSDs were introduced. Realize this is different than other types of mixed mode flash, like that on the Samsung 'EVO' models, which have a small SLC segment present on each TLC die. That static partitioning kept those types of solutions more consistent in performance than the M600 was when we first evaluated its performance.

slc-mlc.png

What if we borrowed the idea of keeping the flash mode static, but just keeping to the faster mode? Transcend has announced it will be doing just that in the coming year. These will be SSDs equipped with MLC flash, but that flash will be configured to operate in SLC mode full time. This will enable ~4x write speeds and higher endurance ~30,000 write cycles compared to ~5-10k P/E cycle figures of the same flash operating in MLC mode. This performance and endurance boost comes at a cost, as these SSDs will consume twice the flash memory for the equivalent MLC model capacity. We predict this type of substitution for standard SLC flash will be a continuing trend since SLC flash production volume is insignificant compared to MLC. This trick gets you most of the way to SLC performance and endurance for (in the current market) less cost/GB of a straight SLC SSD.

Upcoming Transcend models to include SuperMLC technology:

  • SSD510K - 2.5”
  • MSA510 - mSATA
  • HSD510 - half slim
  • MTS460 & MTS860 - M.2

Source: Transcend

Lexar Updates 633x, 2000x SD Card Lines with Higher Capacities

Subject: Storage | October 13, 2015 - 09:24 AM |
Tagged: XQD, SD, microSD, Lexar, flash, CFast

Lexar (Micron's portable media brand) is known for their versatile flash media readers and lines of portable flash memory products. Today they have updated two of their big SD Card lines. First up is their 2000x (300MB/s) product, which now comes in a 128GB capacity:

2000x-128gb.png

As we pointed out in our SD Card Speed Classes, Grades, Bus Modes, and File Systems Explained piece, cameras and video recorders most likely won't use that super high 250MB/s write speed, but emptying a 128GB card at 300MB/s will take only 7 minutes (provided your destination device can write that fast)! This model comes with a small USB 3.0 reader, which makes sense as most systems can't hit 300MB/s with their built-in readers!

Next up is a HUGE capacity introduced in their 633x line:

633x-512gb.png

This model may be less than half the speed of the 2000x part above, but 95 MB/s is not too shabby considering this card can store a half a TB! Write speeds are a bit more limited as well, coming in at 45MB/s. The use case for this card is as a full-time backup slot for capable SLRs, or more commonly (I believe) as a semi-permanent secondary storage addition to Ultrabooks. The cost at $0.54/GB comes in far less than the internal storage upgrade prices of many laptops.

Lexar also updated their CFast lines with faster (3500x / 3600x) models, as well as their XQD lines (1400x / 2933x). Lastly, the Professional Workflow XR2 (XQD 2.0) and UR2 (microSD UHS-II) pods are now available.

Stand by for a review of the 633x 512GB SD Card as we have one in for testing!

Full press blast after the break.

Source: Lexar

Google giveth with one hand whilst taking with the other

Subject: General Tech | August 28, 2015 - 04:40 PM |
Tagged: google, chrome, flash, apple

The good news from Google is that as of next month, Flash ads will be 'Click to Play' when you are browsing in Chrome.  This will be nice for the moving ads but even better for defeating those sick minded advertisers who think audio ads are acceptable.  However this will hurt websites which depend on ad revenue ... as in all of the ones that are not behind a paywall which have Flash based ads.  The move will make your web browsing somewhat safer as this will prevent the drive-by infections which Flash spreads like a plague infested flea and as long as advertisers switch to HTML 5 their ads will play and revenue will continue to come in.

The news of Chrome's refusal to play Flash ads is tempered somewhat by Google's decision to put advertising ahead of security for Apple devices.  The new iOS 9 uses HTTPS for all connectivity, providing security and making it more difficult for websites to gather personalized data but as anyone who uses HTTPS Everywhere already knows, not all advertisements are compliant and are often completely blocked from displaying.  To ensure that advertisers can display on your iOS9 device Google has provided a tool to get around Apple's App Transport Security thus rendering the protection HTTPS offers inoperative.  Again, while sites do depend on advertisements to exist, sacrificing security to display those ads is hard to justify.

adobe-flash-player-icon.jpg

"The web giant has set September 1, 2015 as the date from which non-important Flash files will be click-to-play in the browser by default – effectively freezing out "many" Flash ads in the process."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

FMS 2015: Novachips HLNAND Pushes SSDs Beyond 16TB Per SSD Controller

Subject: Storage | August 13, 2015 - 08:12 PM |
Tagged: FMS 2015, ssd, sata, SAS, pcie, NVMe, novachips, HLNAND, flash

It turns out Samsung wasn’t the only company to have 16TB SSDs at Flash Memory Summit after all:

DSC04501.jpg

Now that I’ve got your attention, Novachips is an SSD company that does not make their own flash, but I would argue that they make other peoples flash better. They source flash memory wafers and dies from other companies, but they package it in a unique way that enables very large numbers of flash dies per controller. This is handy for situations where very large capacities per controller are needed (either physically or logically).

slide 8.png

Normally there is a limit to the number of dies that can communicate on a common bus (similar limits apply to DRAM, which is why some motherboards are picky with large numbers of DIMMs installed). Novachips gets around this with an innovative flash packaging method:

Slide3.JPG

The 16-die stack in the above picture would normally just connect out the bottom of the package, but in the Novachips parts, those connections are made to a microcontroller die also present within the package. This part acts as an interface back to the main SSD controller, but it does so over a ring bus architecture.

slide 9.png

To clarify, those 800 or 1600 MB/sec figures on the above slide are the transfer rates *per ring*, and Novachips controller is 8-channels, meaning the flash side of the controller can handle massive throughputs. Ring busses are not limited by the same fanout requirements seen on parallel addressed devices, which means there is no practical limit to the number of flash packages connected on a single controller channel, making for some outrageous amounts of flash hanging off of a single controller:

DSC04213.JPG

That’s a lot of flash on a single card (and yes, the other side was full as well).

The above pic was taken at last years Flash Memory Summit. Novachips has been making steady progress on controller development as well. Here is a prototype controller seen last year running on an FPGA test system:

DSC04231.JPG

…and this year that same controller had been migrated to an ASIC:

DSC04493.jpg

It’s interesting to see the physical differences between those two parts. Note that both new and old platforms were connected to the same banks of flash. The newer photo showed two complete systems – one on ONFi flash (IMFT Intel / Micron) and the other on Toggle Mode (Toshiba). This was done to demonstrate that Novachips HLNAND hardware is compatible with both types.

DSC04497.jpg

Novachips also had NVMe PCIe hardware up and running at the show.

Novachips was also showing some impressive packaging in their SATA devices:

DSC04500.jpg

At the right was a 2TB SATA SSD, and at the left was a 4TB unit. Both were in the 7mm form factor. 4TB is the largest capacity SSD I have seen in that form factor to date.

DSC04503.jpg

Novachips also makes an 8TB variant, though the added PCB requires 15mm packaging.

All of this means that it is not always necessary to have huge capacity per die to achieve a huge capacity SSD. Imagine very high capacity flash arrays using this technology, connecting a single controller to a bank of Toshiba’s new QLC archival flash or Samsung’s new 256Gbit VNAND. Then imagine a server full of those PCIe devices. Things certainly seem to be getting big in the world of flash memory, that’s for sure.

Even more Flash Memory Summit posts to follow!

Source: Novachips

FMS 2015: Toshiba Announces QLC (4-bit MLC) 3D Archival Flash

Subject: Storage | August 11, 2015 - 08:40 PM |
Tagged: toshiba, ssd, FMS 2015, flash, BiCS, Archive, Archival, 3d

We occasionally throw around the '3-bit MLC' (Multi Level Cell) term in place of 'TLC' (Triple Level Cell) when talking about flash memory. Those terms are interchangeable, but some feel it is misleading as the former still contains the term MLC. At Toshiba's keynote today, they showed us why the former is important:

toshiba-keynote-3d-nand-fms-2015-custom-pc-review-6.jpg

Photo source: Sam Chen of Custom PC Review

That's right - QLC (Quadruple Level Cell), which is also 4-bit MLC, has been mentioned by Toshiba. As you can see at the right of that slide, storing four bits in a single flash cell means there are *sixteen* very narrow voltage ranges representing the stored data. That is a very hard thing to do, and even harder to do with high performance (programming/writing would take a relatively long time as the circuitry nudges the voltages to such a precise level). This is why Toshiba pitched this flash as a low cost solution for archival purposes. You wouldn't want to use this type of flash in a device that was written constantly, since the channel materials wearing out would have a much more significant effect on endurance. Suiting this flash to be written only a few times would keep it in a 'newer' state that would be effective for solid state data archiving.

The 1x / 0.5x / 6x figures appearing in the slide are meant to compare relative endurance to Toshiba's own planar 15nm flash. The figures suggest that Toshiba's BiCS 3D flash is efficient enough to go to QLC (4-bit) levels and still maintain a higher margin than their current MLC (2-bit) 2D flash.

More to follow as we continue our Flash Memory Summit coverage!

Something is cooking in San Francisco

Subject: Storage | July 28, 2015 - 11:26 AM |
Tagged: Intel, micron, flash

DSC03253.JPG

...stay tuned!

Computex 2015: Micron Announces 16nm TLC For Consumer SSDs

Subject: Storage, Shows and Expos | June 2, 2015 - 11:47 PM |
Tagged: tlc, ssd, micron, flash, computex 2015, computex, 16nm

Chugging right along that TechInsights Flash Roadmap we saw last year, Micron has announced the TLC extension to their 16nm flash memory process node.

Micron Roadmap.png

While 16nm TLC was initially promised Q4 of 2014, I believe Micron distracted themselves a little with their dabbles into Dynamic Write Acceleration technology. No doubt wanting to offer ever more cost effective SSDs to their portfolio, the new TLC 16nm flash will take up less die space for the same capacity, meaning more dies per 300mm wafer, ultimately translating to lower cost/GB of consumer SSDs.

micron_128gb_16nm_nand_flash.jpg

Micron's 16nm (MLC) flash

The Crucial MX200 and BX100 SSDs have already been undercutting the competition in cost/GB, so the possibility of even lower cost SSDs is a more than welcome idea - just so long as they can keep the reliability of these parts high enough. IMFT has a very solid track record in this regard, so I don't suspect any surprises in that regard.

Full press blast appears after the break.

Tired of patching Flash? You might not need to worry as much anymore

Subject: General Tech | January 28, 2015 - 01:28 PM |
Tagged: youtube, google, flash, html5

Youtube has finally ditched Flash as the default player for video in Chrome, Internet Explorer 11 and Safari 8.  If you use the beta builds of Firefox you will also be provided HTML5 video by default but as of yet the official release will still be playing Flash videos.  The adaptive bitrate which HTML5 can handle, without the use of plugins, could reduce buffering by 50% in a normal situation and up to 80% on congested networks according to the information which was given to The Inquirer.  As well the VP9 Codec can provide a stream at 35% less bandwidth than Flash which makes 4K and 60fps videos start much faster.  Flash is not yet dead and you can revert back to it, if you want to play Snake while your video is loading.

HTML5_Logo_512.png

"GOOGLE'S YOUTUBE video portal has made the switch to HTML5 as a default renderer, marking yet another milestone in the downfall of the Adobe Flash format."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer