Lenovo Tech World: High-Performance S2200 and S3200 Storage Arrays

Subject: Storage | May 27, 2015 - 10:00 PM |
Tagged: storage, SAN, S3200, S2200, Lenovo, datacenter

Lenovo has announced two new high-performance storage products aimed at small and medium business, and the new S2200 and S3200 storage arrays are designed with speed in mind.

lenovo-do.png

The Storage S2200 and S3200 arrays offer dual and single controllers in 2U-12 and 24 drive configurations. The S2200 supports up to 96 drives and the S3200 supports up to 192 drives to easily support storage growth. The S2200 and S3200 make connectivity simple. The S2200 and S3200 support Fibre Channel, iSCSI and SAS, with the S3200 supporting multi-protocol connectivity that can work with Fibre Channel and iSCSI at the same time. This combination of flexibility and scalability makes integration into nearly any environment easy.

S2200_Beauty_Right_view.jpg

Lenovo is also using a technology called "Intelligent Real-Time Tiering" to approximate the performance of flash storage by prioritizing frequently accessed data as it "automatically moves frequently accessed data to higher performing drives every five seconds, significantly increasing storage performance".

With hybrid configurations and Intelligent Real-Time Tiering, the Lenovo Storage S3200 can provide near All-Flash-Array (AFA) performance for up to 120,000 IOPS at a fraction of the cost of today’s Flash only systems.

S3200_rear_view.jpg

The Lenovo S2200 and S3200 SANs will be available worldwide starting in June.

Source: Lenovo

Reliable high volume storage; the 4TB Toshiba MG04ACA400A

Subject: Storage | March 23, 2015 - 03:47 PM |
Tagged: toshiba, MG04ACA400A, datacenter, enterprise

Toshiba's new MG04ACA series are Enterprise class HDDs available in increments of 1TB, from 2TB to 6TB and ship with either 4K or 512B emulation depending on your preference.  Mad Shrimps just wrapped up a review of the 4TB model which certainly cannot match a SSD for speed but it is rated for 1400000 hours and workloads of 550TB a year, constant usage.  You do pay a premium for enterprise level drives but spinning rust is still far more economical in high densities that flash based drives are.  If you are looking for reliable HDDs for your servers, check this review out.

2.jpg

"The new MG04ACA series from Toshiba is composed from drives which are meant for enterprise, mission-critical applications, while sporting higher transfer rates and capacities. The tested sample comes with 128MB of cache and comes in two versions, depending on the applications it is needed for: with 512 sector emulation or strictly with 4K sector. Make sure to choose wisely which drive is for you and your setups in order to bypass any incompatibilities which may arise."

Here are some more Storage reviews from around the web:

Storage

 

Source: Mad Shrimps

AMD Launches Piledriver-based Opteron 6300 Server Chips

Subject: Processors | November 6, 2012 - 01:15 PM |
Tagged: server, piledriver, opteron, datacenter, cpu, amd

AMD announced new server processors on Monday based on the same Piledriver architecture used in the Trinity APUs and Vishera desktop CPUs we recently reviewed. With the release of the Opteron 6300 series, AMD is bringing Piledriver to the server room.

The new chips – similar to the desktop counterparts – bring several performance improvements over the previous generation 6200 series Opterons based on the Bulldozer architecture. AMD is positioning the chips as a upgrade path to existing servers and on merits of performance-per-dollar efficiency. As is AMD's fashion, the new chips are competitively priced and "good enough" performance-wise. With 6300, AMD has stated the goal is to reduce the TCO, or Total Cost of Ownership for servers used in data centers, supercomputers, and enterprises by being compatible with existing AMD server platforms with a BIOS upgrade and representing efficiency improvements over previous chips.

Opteron_6300_Series_hand_metallic_background.jpg

The Opteron 6300 series CPUs themselves build upon the Vishera desktop parts by adding more cores and more L3 cache. The server parts will have up to 16 cores clocked at 2.8GHz base and 3.2GHz turbo. They will have TDP ratings between 85W and 140W and will feature prices from $500 to $1,400. On the cache front, the chips have a 16KB L1 data cache per core, 64KB L1 instruction cache per module, 1MB L2 cache per core, and a shared 16MB cache per socket. AMD has included a quad channel memory controller that supports DDR3 up to 1866 MHz and 1.5TB per server in 4P configurations. AMD has rounded out the chips with four x16 HyperTransport 3.0 links rated at 6.4 GT/s per link. Up to 4 processors per server will be supported, which means a maximum of 64 cores.

Opteron_6300_die_shot_16_core.jpg

With Piledriver, AMD added a number of new instructions including FMA3, BMI, and F16c. The company has also implemented server tweaks to the Bulldozer design to improve branch prediction, instructions per clock, scheduling, and reduced the power draw at higher clockspeeds allowing for the chps to clock higher while staying within the same power envelope of the Bulldozer-based Opteron 6200 series.

AMD is using the same socket as the 6200 series processors, and the new chips can be deployed as an upgrade to the old servers without needing a new motherboard.

Screenshot (339).png

When pitting the new Opteron 6380 to the previous-generation 6278, AMD is claiming a number of performance increases, including a 24-percent and 40-percent improvement in SPECjob2005 and SPECpower_ssj2008 respectively.

Further, the company is claiming competitive performance in server workloads with the Intel competition. AMD offers up benchmarks showing the Opteron 6380 and Xeon E5-2690 trading wins, with the AMD part being slower in the STREAM benchmark, but being slightly faster in LAMPS and NAMD. The allure of the Opteron, according to AMD is that the AMD part is almost half the price of the Intel processor, and is hoping the lower priced parts will encourage adoption. AMD argues that the money saved could easily go towards more RAM or more storage (or simply be saved of course).

Screenshot (338).png

The company has announced that its first major design win is Big Red II supercomputer at Indiana University. Built by Cray, the Big Red II will feature 21,000+ Opteron 6300-series CPU cores paired with NVIDIA GPUs. It represents a massive increase in computing power over IU’s previous Big Red supercomputer with 4,100 CPU cores, and will be used for medical, physics, chemistry, and climate research. Beyond that, AMD has stated more that 30 hardware vendors are slated to introduce servers based on the new Piledriver-based Opteron processors including HP, Dell, Cray, SGI, Supermicro, Sugon, and (of course) SeaMicro. On the software side of things, AMD is working with Microsoft, VMware, Xen, Red Hat, and Openstack. The company also stated that it is leaning on the experience and knowledge gained from the HSA Foundation to improve software support and guide the future direction of Opteron development.

Screenshot (336).png

The Opteron 6300 series is an interesting release that brings several improvements to the company’s server chip offerings. At launch, there are 10 processors to choose from, ranging from the quad core 6308 clocked at 3.5GHz for $501 to the top-end 6386 SE with 16 cores (2.8GHz base, 3.5GHz max turbo) and a $1,392 price tag. The 6366HE is an interesting part as well. It is the same price as the 12-core, 115W TDP Opteron 6348, but its has 16 lower-clocked cores and an 85W TDP. With the non-HE edition processors with 16 cores starting at $703, the 6366HE for $575 is a decent deal if you need multi-threading more than a fewer number of higher clocked cores.

Another bit that I found intriguing is that in a few years, AMD will (likely, if all goes according to plan) be offering processors for just about every type of server. They will have low cost, low power ARM Cortex-A57 based chips, Accelerated Processing Units (APUs) well suited to mixed workloads including GPU-accelerated tasks, and CPU-only chips with lots of traditional x86-64 cores. It seems that Intel will continue to hold the high end on pure performance, but AMD and its SeaMicro server division have not given up competing in the server room by a long shot.

[

Further reading:

The Piledrive architecture and Vishera desktop CPU review and The future of AMD: Vishera and Beyond at PC Perspective.

Intel announces new DC S3700 Series of datacenter SSDs

Subject: Storage | November 5, 2012 - 12:39 PM |
Tagged: ssd, s3700, enterprise, datacenter

Today Intel officially launched a new line of enterprise-oriented SSDs. Dubbed the DC S3700 ('DC for Data Center', 'S' for SATA), this new line fills the large interface speed void left by the older 710 Series, which was limited to SATA 3Gb/sec speeds.

Intel SSD DC S3700 RightAngled.jpg

The S3700 makes some big promises and we are expecting samples shortly. Here's the tally of what's to come:

  • Intel designed 8-channel controller ASIC and firmware
  • SATA 6Gb/sec interface
  • 7mm x 2.5" form factor
  • Random 4k writes 15x faster and reads 2x faster than SSD 710
  • 75,000 4k random read IOPS (all models)
  • 19/32/36/36k 4k random write IOPS (for 100/200/400/800GB capacity)
  • 500MB/sec sequential reads (all models)
  • 200/365/460/460 MB/sec sequential writes (for 100/200/400/800GB capacity)
  • 25nm MLC-HET IMFT flash
  • Rated for 10 Drive Writes per Day (DWPD) over a 5-year lifetime
  • Solid-State-Capacitor backed power-loss protection
  • Shipping in volume ~Q1 2013
  • 1k qty pricing: $235/$470/$940/$1880 ea. for 100/200/400/800GB capacities

The cost of just over $2/GB should be very enticing for an enterprise-grade SSD, but the most interesting tidbit I got from the briefing was that Intel claims this drive will achieve a <500us response time for 4k random writes, 99.9% of the time. Most SSDs will begin to show intermittent peaks in latency when hit with sustained 4k random access. The S3700 Series should mostly eliminate that issue. More to follow on that front once we can log some hours on a sample.