Sharkoon's big bad Bulldozer enclosure

Subject: Cases and Cooling | January 2, 2014 - 12:42 PM |
Tagged: sharkoon, bulldozer

If subtle just isn't your thing then the Sharkoon Bulldozer might be a good case for you.  At 480 x 235 x 460mm (18.9 x 9.2 x 18.1") this is a large case and the numerous LED lights will make this case stand out even more, not to mention the unique paint job on the interior.  There are 10 drive bays which can be modified for 3.5" or 2.5" drives with one bay removable to give your GPU some extra space.  eTeknix liked the bottom mounted PSU and cable runs which make for a clean looking system but you will really have to like the exterior look if you consider buying this case.

unnamed.png

"Sharkoon are not what I would call most people’s first choice when it comes to picking a new chassis, at least not here in the UK. However, we’ve seen a couple of Sharkoon products in the eTeknix office over the last couple of years that really impressed us, not only for being great cases, but also because they offered great value for money. This has left us eager to see more from Sharkoon and today we will be taking a look at their new Bulldozer chassis, a budget friendly ATX chassis that is available in a choice of three colours. Blue, Green or Red LED edition are available, with the blue model coming in a grey chassis, while the green and red LED models come in a black chassis."

Here are some more Cases & Cooling reviews from around the web:

CASES & COOLING

Source: eTeknix

AMD Releases FX CPU Refreshes

Subject: Processors | April 30, 2013 - 11:04 AM |
Tagged: amd, FX, vishera, bulldozer, FX-6350, FX-4350, FX-6300, FX-4300, 32 nm, SOI, Beloved

 

Today AMD has released two new processors that address the AM3+ market.  The FX-6350 and FX-4350 are two new refreshes of the quad and hex core lineup of processors.  Currently the FX-8350 is still the fastest of the breed, and there is no update for that particular number yet.  This is not necessarily a bad thing, but there are those of us who are still awaiting the arrival of the rumored “Centurion”.

These parts are 125 watt TDP units, which are up from their 95 watt predecessors.  The FX-6350 runs at 3.9 GHz with a 4.2 GHz boost clock.  This is up 300 MHz stock and 100 MHz boost from the previous 95 watt FX-6300.  The FX-4350 runs at 3.9 GHz with a 4.3 GHz boost clock.  This is 100 MHz stock and 300 MHz boost above that of the FX-4300.  What is of greater interest here is that the L3 cache goes from 4 MB on the 4300 to 8 MB on the 4350.  This little fact looks to be the reason why the FX-4350 is now a 125 watt TDP part.

fx_logo.jpg

It has been some two years since AMD started shipping 32 nm PD-SOI/HKMG products to the market, and it certainly seems as though spinning off GLOBALFOUNDRIES has essentially stopped the push to implement new features into a process node throughout the years.  As many may remember, AMD was somewhat famous for injecting new process technology into current nodes to improve performance, yields, and power characteristics in “baby steps” type fashion instead of leaving the node as is and making a huge jump with the next node.  Vishera has been out for some 7 months now and we have not really seen any major improvement in regards to performance and power characteristics.  I am sure that yields and bins have improved, but the bottom line is that this is only a minor refresh and AMD raised TDPs to 125 watts for these particular parts.

The FX-6350 is again a three module part containing six cores.  Each module features 2 MB of L2 cache for a total of 6 MB L2 and the entire chip features 8 MB of L3 cache.  The FX-4350 is a two module chip with four cores.  The modules again feature the same 2 MB of L2 cache for a total of 4 MB active on the chip with the above mentioned 8 MB of L3 cache that is double what the FX-4300 featured.

Perhaps soon we will see updates on FM2 with the Richland series of desktop processors, but for now this refresh is all AMD has at the moment.  These are nice upgrades to the line.  The FX-6350 does cost the same as the FX-6300, but the thinking behind that is that the 6300 is more “energy efficient”.  We have seen in the past that AMD (and Intel for that matter) does put a premium on lower wattage parts in a lineup.  The FX-4350 is $10 more expensive than the 4300.  It looks as though the FX-6350 is in stock at multiple outlets but the 4350 has yet to show up.

These will fit in any modern AM3+ motherboard with the latest BIOS installed.  While not an incredibly exciting release from AMD, it at least shows that they continue to address their primary markets.  AMD is in a very interesting place, and it looks like Rory Read is busy getting the house in order.  Now we just have to see if they can curve back their cost structure enough to make the company more financially stable.  Indications are good so far, but AMD has a long ways to go.  But hey, at least according to AMD the FX series is beloved!

Source: AMD

hUMA has come with a weapon to slay the memory latency dragon

Subject: General Tech | April 30, 2013 - 10:23 AM |
Tagged: Steamroller, piledriver, Kaveri, Kabini, hUMA, hsa, GCN, bulldozer, APU, amd

AMD may have united GPU and CPU into the APU but one hurdle had remained until now, the the non-uniformity of memory access between the two processors.  Today we learned about one of the first successful HAS projects called Heterogeneous Uniform Memory Access, aka hUMA, which will appear in the upcoming Kaveri chip family.   The use of this new technology will allow the on-die CPU and GPU to access the same memory pool, both physical and virtual and any data passed between the two processors will remain coherent.  As The Tech Report mentions in their overview hUMA will not provide as much of a benefit to discrete GPUs, while they will be able to share address space the widely differing clock speeds between GDDR5 and DDR3 prevent unification to the level of an APU.

Make sure to read Josh's take as well so you can keep up with him on the Podcast.

huma_02.jpg

"At the Fusion Developer Summit last June, AMD CTO Mark Papermaster teased Kaveri, AMD's next-generation APU due later this year. Among other things, Papermaster revealed that Kaveri will be based on the Steamroller architecture and that it will be the first AMD APU with fully shared memory.

Last week, AMD shed some more light on Kaveri's uniform memory architecture, which now has a snazzy marketing name: heterogeneous uniform memory access, or hUMA for short."

Here is some more Tech News from around the web:

Tech Talk

Author:
Subject: Processors
Manufacturer: AMD

heterogeneous Uniform Memory Access

 

Several years back we first heard AMD’s plans on creating a uniform memory architecture which will allow the CPU to share address spaces with the GPU.  The promise here is to create a very efficient architecture that will provide excellent performance in a mixed environment of serial and parallel programming loads.  When GPU computing came on the scene it was full of great promise.  The idea of a heavily parallel processing unit that will accelerate both integer and floating point workloads could be a potential gold mine in wide variety of applications.  Alas, the promise of the technology did not meet expectations when we have viewed the results so far.  There are many problems with combining serial and parallel workloads between CPUs and GPUs, and a lot of this has to do with very basic programming and the communication of data between two separate memory pools.

huma_01.jpg

CPUs and GPUs do not share common memory pools.  Instead of using pointers in programming to tell each individual unit where data is stored in memory, the current implementation of GPU computing requires the CPU to write the contents of that address to the standalone memory pool of the GPU.  This is time consuming and wastes cycles.  It also increases programming complexity to be able to adjust to such situations.  Typically only very advanced programmers with a lot of expertise in this subject could program effective operations to take these limitations into consideration.  The lack of unified memory between CPU and GPU has hindered the adoption of the technology for a lot of applications which could potentially use the massively parallel processing capabilities of a GPU.

The idea for GPU compute has been around for a long time (comparatively).  I still remember getting very excited about the idea of using a high end video card along with a card like the old GeForce 6600 GT to be a coprocessor which would handle heavy math operations and PhysX.  That particular plan never quite came to fruition, but the idea was planted years before the actual introduction of modern DX9/10/11 hardware.  It seems as if this step with hUMA could actually provide a great amount of impetus to implement a wide range of applications which can actively utilize the GPU portion of an APU.

Click here to continue reading about AMD's hUMA architecture.

PlayStation 4 (PS4) Orbis Hardware Specifications - AMD APU or Discrete?

Subject: Graphics Cards, Processors | January 23, 2013 - 11:42 AM |
Tagged: southern islands, sony, ps4, playstation 4, orbis, Kaveri, bulldozer, APU, amd

Earlier today a report from Kotaku.com posted some details about the upcoming PlayStation console, code named Orbis and sometimes just called the PS4.  Kotaku author Luke Plunkett got the information from a 90 page PDF that details the development kit so the information is likely pretty accurate if incomplete.  It discusses a new controller and a completely new accounts system but I was mostly interested in the hardware details given.

We'll begin with the specs. And before we go any further, know that these are current specs for a PS4 development kit, not the final retail console itself. So while the general gist of the things you see here may be similar to what makes it into the actual commercial hardware, there's every chance some—if not all of it—changes, if only slightly.

This is key to keep in mind because here are the specs listed on the report:

  • 8GB of system memory
  • 2.2GB of graphics memory
  • 4 module (8 core) AMD Bulldozer CPU
  • AMD "R10xx" based GPU
  • 4x USB 3.0 ports and 2x Ethernet connections
  • Blu-ray drive
  • 160GB HDD
  • HDMI and optical audio output

We are essentially talking about an AMD FX-series processor with a Southern Islands based discrete card and I am nearly 100% sure that this will not match the configuration of the shipping system.  Think about it - would a console developer really want to have a processor that can draw more than 100 watts inside its box in addition to a discrete GPU?  I doubt it. 

kaveri2.jpg

Instead, let's go with the idea that this developer kit is simply meant to emulate some final specifications.  More than likely we are looking at an APU solution that combines Bulldozer or Steamroller cores along with GCN-based GPU SIMD arrays.  The most likely candidate is Kaveri, a 28nm based product that meets both of those requirements.  Josh recently discussed the future with Kaveri in a post during CES, worth checking out.  AMD has told us several times that Kaveri should be able to hit the 1.0 TFLOPs level of performance and if we compare to the current discrete GPUs would enable graphics performance similar to that of an under-clocked Radeon HD 7770.

There is some room for doubt though - Kaveri isn't supposed to be out until "late Q4" though its possible that the PS4 will be the first customer.  It is also possible that AMD is making a specific discrete GPU for implementation on the PS4 based on the GCN architecture that would be faster than the graphics performance expected on the Kaveri APU. 

kaveri.JPG

When speaking with our own Josh Walrath on this rumor, he tended to think that Sony and AMD would not use an APU but would rather combine a separate CPU and GPU on a single substrate, allowing for better yields than a combined APU part.  In order to make up for the slower memory controller interface (on substrate is not as fast as on-die) AMD might again utilize backside cache, just like the one used on the Xbox 360 today.  With process technology improvements its not unthinkable to see that jump to 30 or 40MB of cache.

xbox360gpu.jpg

With the debate of a 2013 or 2014 release still up in the air, there is plenty of time for this to change still but we will likely know for sure after our next trip to Taipei.

Source: Kotaku

Piledrivers are elegant in comparison to Bulldozers

Subject: Processors | October 23, 2012 - 11:44 AM |
Tagged: vishera, Steamroller, piledriver, FX-8350, fx-8150, FX-6300, FX-6200, bulldozer, amd

The FX-8350 Vishera processor from AMD has finally arrived with 8 fully unlocked cores of polished Piledriver processing power.  With Piledriver there are no huge changes to the existing Bulldozer architecture, this is more of a polishing and optimizing the existing architecture and [H]ard|OCP's testing bears that out.  While faster than the previous generation FX-8150 it still lags behind Intel's Ivy Bridge processors, disappointing but certainly expected.  The unlocked cores do lend themselves somewhat to overclocking, with [H] hitting a stable 4.6GHz with all cores enabled, a 10% jump in frequency.  At that speed it does better when competing with Intel's offerings, until you overclock them as well at which point the comparative performance suffers somewhat.

Make sure to catch Josh's review, covering both the 8 core FX-8350 and the $132 FX-6300 which has a disabled module; bringing back memories of older AMD chips whose modules could be brought back to life.

H_fx8350.png

"AMD's new Piledriver core technology should not be a surprise to any enthusiast as much of its "embargoed" information has already been exposed on the Net. Today we take the AMD FX series model 8350 desktop variant, code named Vishera, and look at it in an enthusiast way as we expose its IPC at 4GHz, and a bit of overclocking."

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP
Author:
Subject: Processors
Manufacturer: AMD

Bulldozer to Vishera

 

Bulldozer is the word.  Ok, perhaps it is not “the” word, but it is “a” word.  When AMD let that little codename slip some years back, AMD enthusiasts and tech journalists started to salivate about the possibilities.  Here was a unique and very new architecture that promised excellent single thread performance and outstanding multi-threaded performance all in a package that was easy to swallow and digest.  Probiotics for the PC.  Some could argue that the end product for Bulldozer and probiotics are the same, but I am not overly fond of writing articles containing four letter colorful metaphors.

vish_01.jpg

The long and short of Bulldozer is that it was a product that was pushed out too fast, it had specifications that were too aggressive for the time, and it never delivered on the promise of the architecture.  Logically there are some very good reasons behind the architecture, but implementing these ideas into a successful product is another story altogether.  The chip was never able to reach the GHz range it was supposed to and stay within reasonable TDP limits.  To get the chip out in a timely manner, timings had to be loosened internally so the chip could even run.  Performance per clock was pretty dismal, and the top end FX-8150 was only marginally faster than the previous top end Phenom II X6 1100T.  In some cases, the X6 was still faster and a more competent “all around” processor.

There really was not a whole lot for AMD to do about the situation.  It had to have a new product, and it just did not turn out as nicely as they had hoped.  The reasons for this are legion, but simply put AMD is competing with a company that is over ten times the size, with the resulting R&D budgets that such a size (and margins) can afford.  Engineers looking for work are a dime a dozen, and Intel can hire as many as they need.  So, instead of respinning Bulldozer ad nauseum and releasing new speed grades throughout the year by tweaking the process and metal layer design, AMD let the product line sit and stagnate at the top end for a year (though they did release higher TDP models based on the dual module FX-4000 and triple module FX-6000 series).  Engineers were pushed into more forward looking projects.  One of these is Vishera.

Click here to read the rest of the Vishera Review!

Finally, the real Trinity reviews arrive

Subject: Processors | October 2, 2012 - 01:56 PM |
Tagged: vishera, trinity, Steamroller, piledriver, bulldozer, amd, a8, a6, A4, a10, 5800K, 5600K

The NDA is over and we can finally tell you all about the new generation of Trinity, especially the compute portion which we were not allowed to discuss in the controversial preview.  Part of the good news is the price, Legit Reviews found the highest MSRP is $122 for the A10-5800K and it is currently available, though at $130.  The performance increase from the previous generation is decent for multicore applications though not so much for single threaded applications, overall you can expect general computing performance in line with Core i3 but not Core i5.  Gaming on the other hand did show much improvement, especially with you compare the built in HD7660D to Intel's current HD4000 and HD3500.  You can catch Josh's review right here.

LR_a10-apu-fm2.jpg

"The internal testing from AMD that we can see above shows a 37% increase in the 3DMark 11 score between the first generation A-Series Llano and this generation of A-Series Trinity. While our numbers don't match their numbers exactly, our Llano system scored 1115 3Dmarks while the AMD internal testing showed 1150 3DMarks. Our AMD A10-5800K scored 1521 3DMarks while they scored 1570. The overall difference was remarkably similar, AMD is boasting an increase of 37% and we saw a difference of 36.4%..."

Here are some more Processor articles from around the web:

Processors

Author:
Subject: Processors
Manufacturer: AMD

Trinity Finally Comes to the Desktop

Trinity.  Where to start?  I find myself asking that question, as the road to this release is somewhat tortuous.  Trinity, as a product code name, came around in early 2011.  The first working silicon was shown that Summer.  The first actual release of product was the mobile part in late Spring of this year.  Throughout the summer notebook designs based on Trinity started to trickle out.  Today we cover the release of the desktop versions of this product.

trin_01.jpg

AMD has certainly had its ups and downs when it comes to APU releases.  Their first real APU was Zacate, based on the new Bobcat CPU architecture.  This product was an unmitigated success for AMD.  Llano, on the other hand, had a pretty rocky start.  Production and various supply issues caused it to be far less of a success than hoped.  These issues were oddly enough not cleared up until late Spring of this year.  By then mobile Trinity was out and people were looking towards the desktop version of the chip.  AMD saw the situation, and the massive supply of Llano chips that it had, and decided to delay introduction of desktop Trinity until a later date.

To say that expectations for Trinity are high is an understatement.  AMD has been on the ropes for quite a few years in terms of CPU performance.  While the Phenom II series were at least competitive with the Core 2 Duo and Quad chips, they did not match up well against the latest i7/i5/i3 series of parts.  Bulldozer was supposed to erase the processor advantage Intel had, but it came out of the oven as a seemingly half baked part.  Piledriver was designed to succeed Bulldozer, and is supposed to shore up the architecture to make it more competitive.  Piledriver is the basis of Trinity.  Piledriver does sport significant improvements in clockspeed, power consumption, and IPC (instructions per clock).  People are hopeful that Trinity would be able to match the performance of current Ivy Bridge processors from Intel, or at least get close.

So does it match Intel?  In ways, I suppose.  How much better is it than Bulldozer?  That particular answer is actually a bit surprising.  Is it really that much of a step above Llano?  Yet another somewhat surprising answer for that particular question.  Make no mistake, Trinity for desktop is a major launch for AMD, and their continued existence as a CPU manufacturer depends heavily on this part.

Continue reading our review of the AMD Trinity A10 APUs!!

Come on AMD, spill the beans on Steamroller already

Subject: General Tech | September 6, 2012 - 11:58 AM |
Tagged: vishera, trinity, Steamroller, piledriver, hot chips, bulldozer, amd, Abu Dhabi

You've seen the slides everywhere and read through what Josh could observe and predict from those slides but at the end of Hot Chips will still know little more about the core everyone is waiting for.  The slides show a core little changed from Bulldozer, which is exactly what we've been expecting as AMD has always described Steamroller as a refined Bulldozer design, improving the existing architecture as opposed to a complete redesign.  SemiAccurate did pull out one little gem which might mean good news for both AMD and consumers which pertains to the high density libraries slide.  The 30% decrease in size and power consumption seems to have been implemented by simply using the high density libraries that AMD uses for GPUs.  As this library already exists, AMD didn't need to spend money to develop it, they essentially managed this 30% improvement with a button press, as SemiAccurate put it.  This could well mean that Steamroller will either come out at a comparatively low price or will give AMD higher profit margins ... or a mix of both.

sr_sl05.jpg

"With that in mind, the HDL slide was rather interesting. AMD is claiming that if you rebuild Bulldozer with an HDL library, the resulting chip has a 30% decrease in size and power use. To AMD at least, this is worth a full shrink, but we only buy that claim if it is 30% smaller and 30% less power hungry, not 30% in aggregate. That said, it is a massive gain with just a button press.

AMD should be applauded, or it would have been, but during the keynote, the one thing that kept going through my mind was, “Why didn’t they do this 5 years ago?”. If you can get 30% from changing out a library to the ones you build your GPUs with, didn’t someone test this out before you decided on layout tools?"

Here is some more Tech News from around the web:

Tech Talk

Source: SemiAccurate